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1. EXECUTIVE SUMMARY 
 
Pfizer (the Applicant) submitted a proposal, under the Fit-For-Purpose (FFP) initiative, intended 
to support the use of the ‘Empirically Based Bayesian Emax Models for Dose Response Design 
and Analysis’ as a statistical methodology for dose finding clinical trials. The submission states 
that as a method to guide dose selection for drug development, the proposed Bayesian Emax 
model characterizes a relationship between drug efficacy and dosage level. Future submitters 
utilizing the proposed methodology in their regulatory submissions are referred to in this 
document as ‘Sponsor(s)’ or ‘a Sponsor’. 
 
The Applicant’s submission document contains an overall procedure of the empirically-based 
Bayesian Emax models and refers to an R package called ClinDR by Thomas (2021) for more 
technical details. In the proposed Bayesian hierarchical model, the Applicant extends a standard 
Emax model using reparameterization. Meta-data from 199 compounds are utilized to assess the 
prior distributions of the Emax model parameters. When the dose-response relationship of a new 
compound is of interest, the Applicant proposes to apply the historical data-based priors to new 
data to update the posterior distributions for all parameters. Then, the Applicant states the model 
estimates a dose-response curve to be used for the dose selection, with the updated posterior 
distributions.  
 
The review of this FFP submission, conducted by The Office of Clinical Pharmacology (OCP) 
and The Office of Biostatistics (OB), focused on (but was not limited to) the applicability of the 
proposed model for future applications, in terms of evaluations on identifiability of model 
parameters and evaluation of prior specifications, and assessing model fit and performance.   
Listed below are issues identified during the review, along with proposed Agency 
recommendations:  
 

a. The Applicant assumes an identical treatment effect across multiple studies. In that sense, 
the proposed method could be applicable in situations where component studies are 
comparable in terms of study population, randomization allocation scheme, primary 
endpoint assessment timelines, etc. In future applications of the methodology to an 
investigational new drug, a Sponsor should provide justifications for inclusion of each 
individual component study prior to designing the meta-analysis and seek concurrence 
from the FDA review team in the relevant therapeutic area.  
 

b. The Applicant uses predictive probability for non-monotonicity as a goodness-of-fit 
statistic (GOF). In general, this proposed test statistic appears reasonable. However, the 
GOF statistic is not universally useful under all possible scenarios. One example of an 
applicable scenario for the proposed GOF statistic may be dose-finding studies with a high-
signal design. Different types of graphical summaries can be considered before the GOF 
testing. Other aspects of data, such as change in variabilities by doses, may also need to be 
checked to provide additional information on the model fitting, which can be useful when 
data from different sources are combined. When using the proposed methodology in the 
future, Sponsors should consider a systematic checking procedure to ensure completeness 



4 
 

of all aspects of model fitting in future applications, as many more abnormal curves could 
appear with expanded application of the tool.  

 
c. The Applicant proposes potential decision criteria of an optimal dose based on two sets of 

simulation studies. The supporting evidence may not be sufficient to generalize the 
proposed decision criteria, because the decision criteria for thresholds of the posterior 
probabilities of the target efficacy and futility could be compound-specific and may be 
dependent upon the study design. Sponsors are recommended to consider study specific 
information to identify dose selection criteria (e.g., thresholds for the posterior 
probability of the target improvement and futility to be used for the dose selection). 
 

d. When one study cannot fully inform the proposed Bayesian Emax model to ensure all 
model parameters are identifiable, additional studies – either historical or prospective – 
are needed to make best use of the R package. Otherwise, alternative model and/or 
methods should be considered and selected based on the data available. 

The proposed Bayesian approach appears attractive for its ability to borrow information from 
historical data for the analysis of typically small dose response studies. We acknowledge that the 
proposed Bayesian method works well for the majority of listed compounds in the Applicant’s 
database, based on results described in the submission document. While the proposed prior 
distributions are subjective, the proposed prior specification for the Emax model appears 
acceptable for dose-response predictions.  
 
The proposed empirically-based Bayesian Emax model, including the GOF statistic, can be 
designated fit-for-purpose under the following conditions:  
 

(1) component studies for a new compound are homogeneous  
(2) the proposed GOF statistic is applicable  
(3) the model is identifiable 
(4) study-specific information is considered for dose selection 

 
The Agency’s determination is based on the Applicant’s original submission, the Applicant’s 
responses to Agency information requests during the review, and the relevant statistical 
literature, including Gelman et al. (2013) and FDA’s Guidance for Industry: Meta-Analyses of 
Randomized Controlled Clinical Trials to Evaluate the Safety of Human Drugs or Biological 
Products (FDA, 2018). This recommendation does not preclude the availability and application 
of other methods for dose finding clinical trials. In practice, a Sponsor should carefully consider 
the specific study design characteristics when choosing candidate methods for a dose finding 
clinical trial; and when deciding on the trial design.  
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2. INTRODUCTION AND BACKGROUND 

2.1 Background  
 
In the field of clinical pharmacology, the sigmoidal Emax exposure-response models have been 
widely used to understand the safety and efficacy of drugs. The Emax model was initially 
developed to describe the kinetic interaction between drug and receptors leading to 
pharmacological responses (Wagner, 1968 and Gibaldi, 1968). Given reversible pharmacological 
responses, consistent with the laws of mass action, the model assumes that a drug acts at the 
level of the molecular target, forming a drug-receptor complex, and that the magnitude of drug 
response is proportional to the fractional number of occupied receptors. Since there exists a finite 
mass of receptors in the body, a maximum response can be attained when all receptors are 
occupied. The interaction between drug and receptor is sigmoidal in shape. The model was 
further modified via reparameterization to fit different purposes (Lalonde, 1992).  
 

2.2 Overview of Submission  
 
The Applicant’s submission provides an overall procedure for empirically-based Bayesian Emax 
models for dose response design and analysis and refers to an R package called ClinDR by 
Thomas (2021) for more technical details. The Applicant describes the proposed Bayesian Emax 
model as a method to guide the dose selection for drug development by characterizing a 
relationship between drug efficacy and dosage level. Meta-data from 199 compounds are utilized 
in the Bayesian hierarchical model to assess the prior distributions of the Emax model 
parameters. This strategy to construct the prior distributions based on the historical data is called 
the meta-analytical predictive (MAP) prior (Schmidli et al. 2014). When the dose-response 
relationship of a new compound is of interest, the Applicant proposes to utilize the MAP prior in 
order to update the Bayesian posterior distributions for all parameters. Then with the use of 
updated posterior distributions, the Applicant states that the model guides the dose selection by 
computing the expected response over a grid of potential doses. 
 
In the proposed Bayesian hierarchical model, the Applicant extended a standard Bayesian Emax 
model by introducing a new parameter, difTarget, and reparametrizing ED50 with a normalization 
scalar P50. The Applicant states that “because difTarget describes an observable treatment 
difference, it is easier to understand than the theoretical effect at infinitely high doses (e.g., Emax), 
and its estimation is usually better than that of the Emax parameter”. The Applicant estimated 
log(ED50/P50) rather than estimating ED50 directly in the dose response studies by using a 
symmetric and diffuse prior (e.g. t-distribution).  The Applicant indicates that the specification of 
such prior distribution requires a clinical team to supply the P50, which is routinely assessed as 
part of phase II development activities. Also, the placebo response, E0, is context-specific, and 
therefore the prior mean and scale parameters for E0 must be pre-specified.  
 
The submission document mentions examples of binary, continuous, and non-monotone 
responses where the proposed Bayesian Emax model has been used and presents an example 
demonstrating the implementation of the model for subsequent study planning. The submission 
presents simulation results evaluating several methods, including the proposed Bayesian Emax 
model, pairwise comparison of each dose to placebo, and a modified maximum likelihood Emax 



6 
 

model estimation. The performance of each estimation method is summarized by root mean 
square error (RMSE) and actual coverage (COV) of nominal 95% intervals.  
 
Finally, the submission mentions software implementations of the proposed Bayesian Emax 
models for guiding dose selection and conducting simulations. The software R package clinDR 
implements the proposed methods. The dose response meta-data are distributed within the 
package and are publicly available for use by any future Sponsor. 

2.3 Data Sources  
 
Efficacy data from 199 compounds have been collected and summarized to assess dosing designs 
and common features of clinical dose response curves. The meta-data include FDA-approved 
compounds between 2009-2017, the Applicant’s compounds that demonstrated efficacy in at 
least one phase II study between 1998-2017, and biological compounds demonstrating efficacy 
in one or more published phase II studies between 1985 and 2014. The primary exclusions were 
oncology compounds and vaccines, which have different dose-finding objectives, designs and 
analyses. There were 128 small-molecule compounds, 61 biologicals (monoclonal antibodies), 
and 10 classified as ‘other’ (e.g., therapeutic proteins). 

3. CLINICAL PHARMACOLOGY EVALUATION  
 
Review Question 1: How does the proposed Bayesian Emax model perform with non-
informative priors comparing with the corresponding frequentist approach? 
 
To address this concern, the OCP review team conveyed the following to the Applicant on 
November 12, 2021: 
 

• We understand that the poor performance of the proposed Bayesian method under a 
setting of using diffusive priors for all model parameters seems unfavorable. However, 
we believe it is important to ensure comparable performance of the Bayesian method 
under noninformative priors with the frequentist approach since it is not feasible to 
evaluate whether the priors are beneficial enough as the magnitude of informativeness 
will depend on the data from the new drug. 

• We speculate that the poor performance of the Bayesian method under noninformative 
priors is likely due to reparameterization including EC50 to log(EC50/P50) and Emax to 
difTarget. The former used a historical P50 as a constant scaler which may not be efficient 
and the latter created a complicated correlation among the model parameters. We 
recommend you investigate the potential concerns and make efforts to further improve 
the model to facilitate the review. 

The Applicant responded to our comments on December 15, 2021. The simulation studies 
described in Sections 3.3.1, 3.3.2 and Appendix H of the original submission were repeated 
using a diffuse prior distribution for the Emax model parameters. Independent uniform prior 
distributions were applied to each parameter (Table 1). The parameters were not normalized 
(e.g., the P50 was not used) or transformed except the uniform prior distribution was applied to 
log(ED50) rather than ED50, as is commonly done. Additionally, the Emax parameter was used 
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instead of the difTarget parameter. The priors were chosen to be diffuse with respect to the dose-
response designs and parameters in the simulation study, but the uniform bounds were not set to 
extremely large values to avoid numerical underflow and overflow problems. 
 
Table 1. Summary of Diffuse Priors 

Parameters Distributions 
E0 Uniform (-20,20) 
Emax Uniform (-20,20) 
Log(ED50) Uniform (-log(1000), log(1000)) 
λ Uniform (0, 10) 

 
Low and high information settings are considered.  
  
Question 1 Conclusions 
The performance of Bayesian Emax model with non-informative priors is worse or similar when 
compared to the frequentist approach (e.g., more model options can be considered to inform dose 
selection), depending on the applied information settings. 
 

• Low information settings in the simulation studies were selected to represent the most 
common situations in drug development. “Low information” refers to the setting 
including fewer doses (e.g., n<3) and lower signal-to-noise (e.g., <50% variation 
explained). The MCMC methods perform worse in the realistic settings with fewer doses 
(e.g., n < 3) and when there is lower signal-to-noise where the Emax model is un-
identifiable in many settings. When further combined with diffuse prior distributions, the 
resulting posterior distributions are far from the asymptotic normal ideal and difficult to 
numerically evaluate.  

• High information settings include more well-targeted doses and higher signal-to-noise. 
The results for the diffuse Bayes and modified ML estimation are more similar, and 
neither uniformly dominates the other as measured by root mean squared error (MSE). 
The diffuse Bayes posterior intervals do have better repeated-sampling coverage 
probabilities than the modified ML methods in these settings. 

  
Review Question 2: How does the Bayesian Emax model perform under a variety of scenarios 
that model parameters are not fully informed by data? 
 
To address this concern, the OCP review team conveyed the following to the Applicant on 
March 7, 2022.  

• We simulated data without informative sampling points for Emax model parameters such 
as ED50 and Emax. With simulated data, we found parameter identifiability issues became 
a hurdle for applying the proposed Bayesian Emax model even with the informative 
priors derived from the meta-data analyses. We also observed that some study data in the 
meta-data pool are sparse to inform the model parameters as shown in Appendix C of the 
initial submission package (e.g., on page 69 for ID1046 1160.2; on page 80 for ID4009 
R668−AD−1224; and on page 81 for ID17 1008−009). 
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• To address our concerns, pull some typical data from the meta-data pool within the 
following categories and analyze these data separately either with informative or non-
informative priors. Submit for further review the results with the data used in the 
analyses. 

 
The Applicant responded to the comments on April 4, 2022. They evaluated the performance of 
the proposed Bayesian Emax modeling when applied to poor dosing designs in four extreme 
settings (See Table 2). In practice, it is common to encounter dose ranging studies with low 
signal-to-noise and only few doses covering a limited dosing range (e.g., high/low dose < 10). 
  
  
Table 2. Summary of Examples. 
Example ID Endpoint Design Feature 
1021 Continuous Appear linear, Including 

placebo 
Details Compound ID=1021 is a subcutaneous injection for the 

treatment of Homozygous Familial 
Hypercholesterolemia. There was a single dose finding 
study with endpoint LDL-C percent change from 
baseline, 5 active doses (dosing range < 10), and a 
placebo group. 

Performance The data supply information about the lower bound for 
the ED50 and the upper bound for the Emax, but the 
upper bound for the ED50 and lower bound for the 
Emax are set largely by the prior distribution, and they 
are thus somewhat arbitrary. 

1046 Continuous Without placebo 
Details Compound ID 1046 (requested) is a small molecule for 

cardio-vascular prevention with primary endpoint 
change from baseline in Activated Partial 
Thromboplastin Time (APPT). There are only 3 doses 
covering a 6-fold range, and as noted in Section I, there 
is no placebo group. 

Performance The impact of the lack of placebo data is visible in the 
upper bound for the effect parameter DifTarget, and the 
lower bound for the placebo response parameter, E0. 
Comparing the results for the diffuse and weakly 
informative placebo priors shows that these bounds are 
largely determined by the placebo response prior. 

4009 Binary Two dose groups at plateau 
with placebo 

Details It is an extreme case with a binary endpoint and only 
two dose groups, both of which appear to be on the 
plateau of the dose response curve. The endpoint is an 
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investigator assessed global improvement responder 
variable for Dermatitis. 

Performance Two features to note are 1) the wide interval for the 
ED50, which is nonetheless bounded by the lowest 
studied dose, and 2) the much closer agreement between 
the DifTarget and Emax parameters due to the fact that 
the data supply much information about the plateau. 

1035 Continuous doses from two studies on or 
very close to the plateau 

Details Compound ID=1035 is an inhaled small molecule for 
the treatment of COPD with change from baseline in 
FEV1 as the endpoint. There were two studies providing 
limited dosing information. This example differs from 
the others included in our response because it includes 
two studies, and there is some indication that the lowest 
tested dose is below the plateau although the doses 
included in the studies clearly do not characterize most 
of the dose response curve well. 

Performance The high uncertainty in the estimation of the Emax and 
ED50 parameters is unsurprising given the lack of data 
on the steeper portion of the dose response curve. The 
upper tails of the ED50 and Emax quantitatively reveal 
something less apparent from simple visual inspection 
of the sample means, which is the possibility that 
additional efficacy might be possible if it feasible to test 
a higher dose. 

 
Question 2 Conclusions 
 

• Including a placebo group is not only valuable for estimating the dose response curve, but 
also for informing the re-parameterized model parameter ‘difTarget’, which is the 
difference in response between the placebo and the specified target dose. The absence of 
a placebo group can alter the responses in the active dose groups and create potential 
reproducibility issues. 

• The analyses results based on the 4 examples indicate that the proposed Bayesian Emax 
model cannot be adequately identified. In practice, it is highly recommended to use 
historical experience from other compounds and additional dose response studies with 
expanded dosing range to predict the unobserved dose response curve to inform dose 
selection. 
 

Summary 
 
When one study cannot fully inform the proposed Bayesian Emax model to ensure all model 
parameters are identifiable, additional studies – either historical or prospective – are needed to 
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make best use of the R package. Otherwise, alternative model and/or methods should be 
considered and selected based on the data available. 

4. STATISTICAL EVALUATION  

4.1 Heterogeneity in Meta-analysis 
 
The Applicant proposes a Bayesian Emax model to characterize the relationship between drug 
efficacy and dose based on multiple data sources to guide the dose selection for further drug 
development. In the proposed model, the Applicant assumes an identical treatment effect across 
multiple studies by sharing common parameters for difTarget, λ, ED50 and Emax across the 
studies, while allowing for heterogeneity in the placebo effect using different placebo parameters 
(e.g. E0). The Agency has the following comments on this parameterization: 
 

• One of the most common purposes for performing the meta-analysis is to provide an 
estimate of the overall treatment effect across the studies. In general, heterogeneity of the 
treatment effect among the component studies is expected, which can be caused by 
differences in study populations such as age of patients, dose level, patient follow-up 
schedules, and other factors. In the statistical literature (see, e.g., E9 Statistical Principles 
for Clinical Trials, International Council on Harmonisation (ICH) of Technical 
Requirements for Pharmaceuticals for Human Use), it is often preferred that the statistical 
analysis accounts for such potential variation. In a Bayesian meta-analysis framework, 
the differences are not expected a priori in general, but study-specific parameters are 
“borrowing strength” across studies and are “exchangeable” (Gelman et al. 2013). 
Accordingly, the overall average effect across all studies could be estimated by the 
median (or mean) of the distribution of study-specific parameters, which can be 
formulated in the Bayesian hierarchical model. The proposed hierarchical model does not 
consider the potential heterogeneity in the treatment effects, in that the parameters 
defining the treatment effect (e.g., difTarget, 𝜆𝜆, ED50 and Emax) are assumed to be 
identical across multiple studies. In accordance with the FDA meta-analysis Guidance 
(U. S. Food and Drug Administration, 2018), it may be desirable to allow treatment 
effects to both vary by study and average across studies with appropriate methods to 
achieve the treatment effect of interest.  

 
• For a new compound, the proposed method will be applied to integrate information from 

multiple randomized controlled studies. To align with the FDA Guidance (U.S. Food and 
Drug Administration, 2018) regarding the meta-analysis of randomized trials, the 
randomized comparisons of each study should be maintained. In other words, when 
estimating the treatment effect by comparing drug to placebo, subjects randomly assigned 
to drug in a single study should be compared to subjects assigned to placebo from the 
same study and not to subjects from other studies. Though the study-specific placebo 
effect is incorporated, the summary statistics (e.g., mean of the primary endpoint) at each 
dose level from the multiple studies are pooled to estimate the common treatment effect 
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(e.g., difTarget, 𝜆𝜆, ED50 and Emax). This pooling strategy deviates from a one-to-one 
randomization scheme. When there are large sample size disparities among the studies 
with different randomization allocations, the results could be biased.   
 

• The current submission package does not investigate the performance of the proposed 
method for multiple studies with heterogeneity. Per Agency’s recommendation in an 
Information Request, the Applicant proposed additional simulations for Low Signal and 
High Signal simulation designs for continuous and binary data, in a total of 8 simulation 
settings. To create heterogeneity, the Applicant plans to consider different number of 
doses and placebo effects across studies with a fixed treatment effect and consistent 
sample size per dose group across studies. The Agency recommends that future Sponsors 
who intend to use the proposed method explore the performance of the proposed method 
in multiple studies. 

 
Summary 
 
In the proposed model, the Applicant assumes an identical treatment effect across multiple 
studies by sharing common parameters for difTarget, 𝜆𝜆, ED50 and Emax across the studies, while 
allowing for heterogeneity in the placebo effect using different placebo parameters (e.g. E0). The 
proposed method could be applicable in situations where individual component studies are 
comparable in terms of study population (e.g., exclusion/inclusion criteria), randomization 
allocation scheme, primary endpoint assessment timelines, etc.  
 

4.2 Priors 

4.2.1 Priors for the historical data 
 
The Applicant used Bayesian hierarchical modeling methods to conduct the meta-analysis.  In 
such modeling, a prior is specified for each study. However, the values of the parameters of the 
priors are not specified as they would be in a Bayesian analysis of the single study. Rather, the 
parameters for each study prior are assumed to represent random draws from a hyperprior 
distribution. The values for the parameters of the hyperprior are then specified. 
 
In this case, the Applicant actually assumed that “The model includes compound-specific Emaxj , 
ED50j and λj parameters, and study-specific E0jk parameters.”  Thus, all of the studies in the 
“meta-data” for a specific compound j, are assumed to have the same prior, except for the 
placebo effect parameter, E0jk, which is given its own prior for each study k.  Because the 
placebo effect parameter is assumed to be study-specific, its parameters are not included in the 
hyperprior. 
 
The Applicant used transformations of the original Emax model parameters in their analyses.  
Instead of Emaxj , the Applicant used the parameter difTargetj, defined as 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗  =  𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 �
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜆𝜆𝑗𝑗

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜆𝜆𝑗𝑗 + 𝐸𝐸𝐸𝐸50𝑗𝑗
𝜆𝜆𝑗𝑗
�  

 
which is the difference from the placebo response at dose dTarget, a specified large dose.  
Instead of ED50j, the Applicant used 𝑙𝑙𝑙𝑙𝑑𝑑 �𝐸𝐸𝐸𝐸50𝑗𝑗

𝑃𝑃50𝑗𝑗
�, where P50j is the a priori prediction of ED50j for 

compound j.  Instead of 𝜆𝜆𝑗𝑗, the Applicant used 𝑙𝑙𝑙𝑙𝑑𝑑𝜆𝜆𝑗𝑗.The Applicant’s submission document does 
not specify whether “log” in these definitions means natural log, log to the base 10, or some 
other type of logarithm. 
 
The Applicant’s submission (in Section 2.2.1) seems to describe the individual prior distributions 
as multivariate-t distributions on 5 degrees-of-freedom, at least for the parameters 𝑙𝑙𝑙𝑙𝑑𝑑𝜆𝜆𝑗𝑗 and 

𝑙𝑙𝑙𝑙𝑑𝑑 �𝐸𝐸𝐸𝐸50𝑗𝑗
𝑃𝑃50𝑗𝑗

� (note: the submission is ambiguous regarding the individual prior for difTarget.) The 

package goes into detail about the hyperpriors that were tried.  These are summarized in Table 5 
of Appendix A in the submission package.  The Applicant considered hyperpriors where all of 
the hyperparameters were independent, and also considered hyperpriors where the 
hyperparameters 𝜇𝜇𝜆𝜆, 𝜇𝜇𝐸𝐸𝐸𝐸50, 𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (the prior means for 𝑙𝑙𝑙𝑙𝑑𝑑𝜆𝜆𝑗𝑗 , 𝑙𝑙𝑙𝑙𝑑𝑑 �𝐸𝐸𝐸𝐸50𝑗𝑗

𝑃𝑃50𝑗𝑗
�, and difTargetj 

respectively) may have correlations. 
 
For each hyperprior, the meta-data were analyzed with MCMC methods resulting in a posterior 
distribution for the hyperparameters.  The medians of the posterior hyperprior distributions are 
presented in Tables 6 and 7 of Appendix B in the submission document. 
 

4.2.2 Priors for future dose response studies 
 
The Applicant states that the posterior predictive distribution obtained from the meta-analysis 
(presumably based on the hyperprior of their choice) would serve as the prior distribution for 
future studies.  The MCMC calculations would produce a distribution in numerical form (i.e. not 
in analytical form, such that the formula for the density could be written down.)  However, the 
Applicant in teleconference with FDA dated on April, 4th, 2022, indicated that the resulting 
numerical distribution, at least for the location parameters, could be well-approximated by a 
multivariate Student’s t-distribution (suitably scale and location translated) on 5 degrees-of-
freedom (hereafter called “t(5)”.) 
 
The proposed prior distribution for 𝑙𝑙𝑙𝑙𝑑𝑑𝜆𝜆𝑗𝑗  and 𝑙𝑙𝑙𝑙𝑑𝑑 �𝐸𝐸𝐸𝐸50𝑗𝑗

𝑃𝑃50𝑗𝑗
� is a bivariate version of the 

multivariate t(5). 𝑙𝑙𝑙𝑙𝑑𝑑𝜆𝜆𝑗𝑗  is centered at 0.0 with a scale multiplier of 0.425.  𝑙𝑙𝑙𝑙𝑑𝑑 �𝐸𝐸𝐸𝐸50𝑗𝑗
𝑃𝑃50𝑗𝑗

�is centered 

at 0.0 with a scale multiplier of 1.73.  The correlation between these two variates is set at -0.45.  
By default, both E0 and difTarget are assigned independent (i.e., independent of 𝑙𝑙𝑙𝑙𝑑𝑑𝜆𝜆𝑗𝑗 and 
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𝑙𝑙𝑙𝑙𝑑𝑑 �𝐸𝐸𝐸𝐸50𝑗𝑗
𝑃𝑃50𝑗𝑗

� and of each other) diffuse t(5) distribution, with a location of 0.0 and a scale 

parameter of 2.0 or 4.0.  The Applicant does note that in specific cases there may be prior 
information about E0 and/or difTarget that would warrant specifying an informative prior 
different from these defaults. 
 
For 𝜎𝜎(a parameter of the likelihood), a uniform distribution is used, with limits chosen wide 
enough to include the plausible values.  For 𝛽𝛽 (the regression coefficient(s), within the 
likelihood, for any covariates included in the model/analysis), a diffuse multivariate normal is 
specified. 
 
Summary 
 
The proposed parameter transformations of 𝜆𝜆 and ED50, where symmetric priors are specified for 
𝑙𝑙𝑙𝑙𝑑𝑑 (𝜆𝜆) and 𝑙𝑙𝑙𝑙𝑑𝑑 �𝐸𝐸𝐸𝐸50𝑗𝑗

𝑃𝑃50𝑗𝑗
�, appear reasonable given the nature of these parameters.  The 

transformation of Emax to difTarget does not seem as intuitive, but the Agency accepts the 
Applicant’s statement that the transformation improves model fit. 
 
The proposed Bayesian approach appears attractive for its ability to borrow information from 
historical data for the analysis of typically small dose response studies. The Agency 
acknowledges that the proposed Bayesian method works well for the majority of listed 
compounds in the Applicant’s database, based on results described in the submission document. 
While the proposed prior distributions are subjective, the proposed prior specification for the 
Emax model looks acceptable for dose-response predictions.  
 

4.3 Assessing Model Fit 
 
Statistical assessment of model fitting is meant to check adequacy of model prediction by 
comparing the prediction to the observation. In this submission, model diagnostics were used to 
identify deviations in the observed data from the Emax model prediction. The Applicant uses 
Bayesian GOF by drawing simulated samples from the joint posterior predictive distribution of 
replicated data and comparing the samples to the observed data. As in any GOF test, test 
quantities must be defined to represent aspects of the data we are checking. One important aspect 
to be checked in this application is non-monotone dose response. The Applicant proposes “the 
difference in response between the best of the lower doses and the highest dose” as the test 
quantity. The Agency acknowledges that such test quantity is important, but the test statistic may 
not be the best choice and not universally useful under all possible scenarios (see Section 3.3.3). 
Unlike the Bayesian Emax model itself, the GOF predictive value does involve hypothesis 
testing, so the power and type I error need to be considered.  Using the GOF predictive value of 
0.05 as a boundary makes a reasonable compromise between type I and II errors. In addition, 
graphic checks can be performed before any quantitative approach. In this submission document, 
all the compounds where the model failed can be relatively easily identified with the graphic 
check. Furthermore, there is a chance that the graphic check can still display “clear lack of fit by 
other measures and visual inspection” when GOF > 0.05. Thus, the P-value of the GOF should 
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be combined with other types of model checks and other test quantities in model assessment.  
Different graphic displays can be implemented for test statistics of interest before the GOF 
testing. Other aspects of data, such as change in variabilities by doses, may also need to be 
assessed in order to provide additional information on the model fitting, because this could be 
useful when data from different sources are combined. In general, adjusting multiple 
comparisons when using more than one test statistic in the GOF testing are not recommended. 
 
The Applicant also assesses other posterior predictive quantities, such as the high fit statistics, 
where “the highest dose performed better than expected compared to the lower doses”, but its 
interpretations and implication in drug development is not clear. A higher fit probability for one 
dose compared to another does not necessarily indicate inadequacy of the model fitting.  
 
Summary 
 
In this submission, an overwhelming majority of the compounds listed show good model fit.  
This may be because many compounds with improper dose-response curves had been ruled out 
in pre-clinical studies. There is still a chance that other types of unusual curves could be 
undetected with the current approach.  
 
Overall, the proposed model fitting assessing tools are acceptable.  However, a more systematic 
checking procedure may be needed in future submissions to ensure completeness of all aspects of 
model fit, as many more abnormal curves could appear with expanded applications. 
  

4.4 Examples and Simulations 
 
Heterogeneity in a meta-analysis example  
 
In Section 3.2.1 of the submission, the Applicant analyzes dose response of tofacitinib for the 
treatment of rheumatoid arthritis (RA). By using the proposed Bayesian Emax model, the 
Applicant combines the drug responses (ACR20) from two dose response studies ‘A3921019’ 
and ‘A3921035’ whose primary visits are at week 6 and week 12, respectively. The Applicant 
states that data from the two studies are similar and the proposed method was used for meta-
analysis with these two, assuming identical treatment effect at week 6 and week 12. It is known 
that a drug effect is a function of dose and time, but the proposed model includes parametric 
functions for the relationship between dose and response only; the dependence of time and 
response is not considered. Combining drug effects assessed at different timepoints could result 
in different clinical interpretations.  

 

Criteria for dose selection 
 
In Section 3.2.4 of the submission, the Applicant describes how to derive decision criteria for 
dose selection. The Applicant states that “Exploration of the distribution of the posterior 
probabilities from the futile and optimal doses suggests a potential decision criteria for 
establishing doses for further evaluation could require a probability ≥ 0.75 to exceed futility and 
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a probability ≥ 0.1 to meet or exceed the targeted efficacy … These rates are indicative of the 
precision in dose selection achievable with a binary endpoint and moderate effect size.” The 
Agency acknowledges that the decision criteria for thresholds of the posterior probabilities of the 
target efficacy and futility were derived based on two sets of simulation studies with a pre-
defined optimal dose (e.g., 50 mg or 450 mg), but supporting evidence is not sufficient to 
generalize the proposed decision criteria. For example, in Section 3.2.1, the Applicant assumes 
that the target improvement probability is ≥ 0.3 and a dose providing < 0.2 improvement would 
be unsuccessful. In Table 2, the Applicant presents the predictive posterior probabilities of the 
target improvement and futility at each dose level to demonstrate how the model predictions 
correspond to the results of four phase III studies. Based on the criteria proposed in Section 
3.2.4, a candidate for the optimal dose is 6 mg with safety considerations, while the Applicant 
proposes the dose level of 10 mg, at which a probability to exceed futility is 1 and a probability 
to exceed the targeted efficacy is 0.8.  It appears that there is still some ambiguity regarding how 
to determine decision criteria. The Agency recommends future Sponsors consider study-specific 
information to identify dose selection decision criteria (e.g., thresholds for the posterior 
probability of the target improvement and futility to be used for the dose selection).  

 

GOF for Low-signal design  
 
Unlike the Bayesian Emax model itself, the GOF predictive value does involve hypothesis 
testing, so the power and type I error need to be considered. In the simulation study of Section 
3.3.3 of the submission, the power of the GOF test is extremely low for any Low-signal design; 
the proposed model may not be useful under such scenarios. Instead, pairwise comparisons or 
other diagnostic tools could be considered in such a scenario. 
 

4.5 Others 
 
Use of prior knowledge of P50 and E0 
 
The Applicant notes that P50 and the placebo response (E0) are compound-specific and not 
derived from the historical data. The Applicant states P50 can be predicted from pre-clinical and 
early-stage clinical data before initiating clinical dose finding studies, and the prior mean and 
scale parameters for the placebo effect E0

 must be specified by the study team. In future 
submissions for new compounds, a Sponsor should justify the choices of prior information 
regarding P50 and E0.  In addition, meetings with the Agency should be requested to discuss the 
prior information. If there are multiple predictions based on different data sources that differ 
substantially, Sponsors should perform a sensitivity analysis to check the robustness of their 
models to different choices of priors for P50 and E0. 

 
Prior update from historical data  
 
In the Applicant’s communication dated September 28, 2021 in response to Agency’s 
information request, the Applicant describes that when data from a substantial number (e.g., 
approximately 100) of new compounds are available, the hierarchical modeling and the 
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predictive prior distributions will be updated. The Agency notes that any change in the prior 
specifications should be made at an early stage and prespecified prior to a future submission.   
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BACKGROUND

21 April 2021, Pfizer submitted a Fit-for-Purpose (FFP) Request for an FDA Qualification 
Opinion on “Empirically Based Bayesian Emax Models for Dose Response Design and 
Analysis.”  On 14 September 2021, Pfizer received comments and requests for information 
on this submission from the FDA.

This document includes Pfizer’s formal responses to these FDA information requests.

AGENCY REQUEST FOR INFORMATION AND SPONSOR RESPONSE

Clinical Pharmacology

Question 1

We recommend conducting a performance comparison between a “Population analyses under 
frequentist paradigm” and your proposed Bayesian approach under the non-informative prior 
setting.  This comparison serves as a basic assessment of the submitted package without 
influence of priors given that the two approaches should yield similar results under the 
setting of using non-informative priors.  Propose a detailed analysis plan based on simulation 
studies for review if you choose to proceed.

Response 1

Section 3.3, "Simulation results", contains an extensive evaluation of a "population analyses 
under frequentist paradigm" compared to our proposed Bayesian methods using non-
informative prior distributions.  Our prior distributions are constructed with diffuse prior 
distributions for the placebo-response and effect-size parameters.  The ED50 and Hill (
parameters are assigned the prior distributions derived from the predictive distributions of 
these parameters in the large meta-analysis with approximately 200 compounds. Simulations 
of formal Bayesian methods (i.e., MCMC evaluation) with fully diffuse prior distributions on 
all parameters is unnecessary because past simulations have shown this method will perform 
badly.  Indeed, the poor performance of the Bayesian methods with a fully diffuse prior 
distribution was one of the primary motivations for conducting the large meta-analyses to 
provide an empirical basis for stabilizing the Bayesian estimation of the most difficult 
parameters to estimate. 

Several repeated-sampling simulations are included in the test code for the R package, 
clinDR, which are executed with each new version to validate the code.  These simulations 
are conducted under different conditions with known theoretical approximations that provide 
reliable references for checking the validity of our code.  The prior distributions mentioned in 
the previous paragraph are utilized.  Dose response studies with very large sample sizes are 
simulated because statistical theory assures that the Bayesian methods, if correctly 
implemented, will produce confidence intervals having the correct coverage in this setting.  
Several such simulations are included for different types of applications (e.g., continuous and 
binary data).  We can supply more detail and perform more such simulations if this is helpful.  
We have also performed test simulations where lightly informative distributions are applied 
to the placebo and effect size parameters.  In this setting, by drawing the model parameters 
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from their prior distribution and setting them to be the population parameters for each 
simulation replication, the resulting Bayesian posterior intervals should also have the correct 
frequentist coverage even with small simulated sample sizes (Cook and Gelman 2006).  The 
simulation code to perform this Bayesian frequentist simulation is already part of the R 
package.  We can supply such results if they will increase your confidence in the numerical 
methods.   

Statistical Comments

Question 1

Clarify how the results of your meta-analysis are to be used for the design and analysis of 
future dose-response studies.

Response 1

The meta-analysis provides a strong empirical basis for specifying a simple parametric model 
(Emax) that describes the clinical dose response of a high proportion of compounds in drug 
development.  This empirical evidence supplements theoretical support for this model from 
clinical pharmacology. Although the Emax model has a simple mathematical form, it is non-
linear in its parameters and often difficult to estimate with data that can be practically 
collected.  Maximum likelihood or non-linear least squares estimation of the Emax model 
does not perform well in clinical settings.  The estimation can be improved with Bayesian 
prior distributions for the non-linear parameters.  The hierarchical modeling of the meta-data 
produces predictive distributions for these parameters that can serve as empirically based 
prior distributions for the difficult-to-estimate parameters when combined with commonly 
available information specific to each future compound.  

The resulting Bayesian Emax model serves as the foundation for both the planning and 
analysis of subsequent dose response studies.  An example illustrating the modeling approach 
to select a dosing design, determine appropriate sample sizes to differentiate between active 
doses, and assess the operating characteristics of different dose selection criteria is in Section 
3.2.4.  Section 3.2.1 describes an application of the model that was used to plan the doses to 
include in a second dosing study, combine the results from the two studies which have 
differing doses, and to predict the performance of different doses in future Phase 3 studies, 
which was used to select two doses for future development. 

Question 2

In Section 3.1.2, you proposed to analyze future dose response studies by specifying a prior 
distribution for the transformed Emax model parameters log () and log (ED50/P50). Both of 
these transformed parameters will have a symmetric prior (a scaled t5 distribution) centered 
at zero, implying that the prior median for  is 1 and the prior median for ED50 is P50. The 
prior for ln() is scaled by 0.425, and the prior for ln(ED50/P50) is scaled by 1.73. A 
correlation coefficient between ln() and ln(ED50/P50) is also specified as -0.45. However, 
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the document does not state explicitly how this prior distribution is to be implemented. We 
recommend providing the details of your proposed method with the following points: 

Question 2a

Clarify a hierarchical structure and likelihood of the proposed model. 

Response 2a

In a future application to a new compound, the prior distributions of the ln() and 
ln(ED50/P50) parameters are based on the predictive hierarchical distributions estimated in the 
meta-analysis described in Section 2.2.  To simplify the estimation of a future dose response 
curve, analytical approximations (t-distributions) to these predictive prior distributions were 
developed, which is described in Section 2.3.  The hierarchical distributions in the meta-
analysis are not updated with each new compound, which greatly simplifies the analysis of a 
new compound, because it does not require hierarchical modeling.  This is a common 
strategy in Bayesian analyses.  It has been described as the meta-analytic-predictive prior 
approach (Schmidli, et al, 2014).  Because we have numerous (approximately 200) 
compounds in the meta-analysis, data from a single new compound would yield very little 
change to the estimation of the hierarchical distributions.  When data from a substantial 
number (e.g., approximately 100) of new compounds are available, the hierarchical modeling 
in Section 2.2 will be updated, and the predictive prior distributions will be updated.  Over 
time this will allow the empirical basis for the Bayesian Emax model to improve while 
maintaining the simplicity of its application to each new compound. 

Question 2b

Include the nature of each prior and justify its applications. For example, clarify why you set 
specific priors for each parameter and how the correlation between ln() and ln(ED50/P50) is 
to be implemented.

Response 2b

As noted in the response to comment 2a), all of the numerical values ( e.g., correlation of -
0.45 between ln() and ln(ED50/P50) ) are derived and explained in Section 2.3 based on the 
modeling of the meta-data described in Section 2.2.  As referenced in Section 2.3, additional 
computational and numerical details for the prior predictive distributions are in Appendices 
A and B.  The approach used to combine these predictive prior distributions with compound-
specific information to complete the specification of a full prior distribution for the model 
parameters is in Section 3.1.2.  Clinical teams have been able to understand and implement 
this approach.

The use of the prior distribution in the dose response package, clinDR, does not require any 
new programming.  The numerical values describing the prior distribution (e.g., expected 
placebo response) are input to a function called emaxPrior.control that creates an object 
specifying the prior distribution. The inputs to the prior derived from the meta-analysis are 
supplied by default to emaxPrior.control, so it is not necessary for users to input them (users 
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can over-ride the defaults, but this is not recommended except for some prior sensitivity 
checking).  The prior object is then passed to the model fitting and simulation functions.  The 
MCMC evaluation of the posterior distribution is performed by these functions using the 
STAN MCMC Bayesian computing package (STAN Development Team, 2015).  The inputs 
describing the prior distribution can also be assigned in a simple GUI interface using the 
shiny app that is supplied with the clinDR package.  The shiny app then creates the function 
calls for users.

Question 3

In Section 3.2.2, you state that the results of the study ‘A7941005’ are displayed in the left 
panel of Figure 8, and the results of combining two studies ‘A7941005’ and ‘A7941006’ are 
presented in Figure 8. However, we expect the results from the single study and the results 
from the combined studies would be different. We recommend updating the results 
accordingly.

Response 3

Thanks for highlighting our sentence on the second line of p. 31, which is confusing:

"The results of the first study are displayed in the left panel of Figure 8."

The sentence should have stated:

"The plot of the fitted Emax model from the final analysis, which included data from both 
studies, is in Figure 8.  The final fit for the first study displayed in the left panel of Figure 8 is 
indistinguishable from the results when the model was initially applied to the first study 
alone (not shown)."

The plot of the model fit to the first study alone is displayed here in Figure 1 below.  
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Figure 1. Dose response plot for first study fitted only with data from the first study in 
the example in Section 3.2.2, corresponding to Figure 8 in the report

Figure 8 in the manuscript is included here as Figure 2 for convenient comparison

09
01

77
e1

98
2d

e5
e1

\A
pp

ro
ve

d\
A

pp
ro

ve
d 

O
n:

 2
8-

S
ep

-2
02

1 
18

:3
3 

(G
M

T
)



Qualification Opinion
Response to FDA Request for Information 14 Sep 2021

PFIZER CONFIDENTIAL
Page 7

Figure 2. Figure 8 Reproduced from the Report

We propose to update the description of the plot in the manuscript as presented here if/when 
the manuscript is revised.  If you prefer, we can add Figure 1 to the manuscript. 

Question 4

In Section 3.3, simulations are used to describe the operating characteristics of the proposed 
Bayesian Emax model under a wide range of conditions.  We recommend the following: 

Question 4a

It appears that all simulation scenarios include only one study.  Since the proposed model 
will be applied to meta-analyses, simulation studies considering certain characteristics of 
meta-analyses, such as the number of studies, their sample size and level of heterogeneity 
across studies, will be helpful to demonstrate the proposed method’s performance.  Propose a 
detailed analysis plan for the simulation studies. 

Response 4a

We propose to use the simulation design from Section 3.3 as the foundation for the additional 
simulations.  The population Emax models with  =0.8 and ED50/ P50=4 will be used (see 
Figure 22 in the report for displays of these curves), because they produce data similar to 
many real dose response studies, and the population parameters differ from the prior 
distribution by amounts common in real applications.  Simulations will be done for the Low 
Signal and High Signal simulation designs for continuous and binary data (4 combinations).  
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The first simulated study for each new simulated compound will match those in the report, 
but then a second 'study' will be simulated for each compound that matches the  common 
situation in which only the higher doses and placebo are included in the second study.  
Specifically, for the Low Signal design, the lower dose will be dropped in the second study, 
and for the High Signal design, the lowest two doses will be dropped.  The second studies 
will thus have lower total sample sizes and fewer doses.  Finally, the data in the second study 
will be simulated with the same population placebo rate as in the first study, and then it will 
be repeated with the population placebo response set to 1/2 the difference between the 
highest dose and placebo in the first study (a large change in placebo response, for a total of 
8 simulation settings).  The simulation results will be summarized like those in Section 3.3, 
including the same alternative methods for benchmarks.

Question 4b

In Section 3.3.3, the proposed model is evaluated under a simulation where the true 
population dose-response relationship does not follow the Emax model. Table 4 displays the 
proportion of the simulated data sets with the GOF fit probability less than 0.05.  In Table 4, 
the GOF test power was low for any Low-signal design.  Explain whether a different model 
should be applied instead in such a Low-signal design. 

Response 4b

A different model is not indicated in the Low-Signal settings.  A detailed discussion of 
considerations in the Low-Signal setting is given on p. 56 of the report.  The data from such 
studies will poorly determine the dose response curve, and it will yield large uncertainty for 
most decision metrics even when the model is correct.  Note that the power to differentiate 
from placebo is only 80% when the Emax model is correctly assumed.  The power to reject 
the null is <60% for the models with non-monotone dose response even when the optimal 
dose is known in advance.  There is little opportunity to differentiate between active doses.   

Further, if it is known in advance that we are in a Low Signal setting, either the design will 
require change, or the compound will be terminated for lack of sufficient efficacy.  The fact 
that the design is in a Low-Signal setting is typically known only after the data are collected.
Selecting alternative models at this stage is unlikely to be helpful, and it can be misleading. 

Question 5

You extended a standard Bayesian Emax model by introducing a new parameter difTarget 
and reparametrizing ED50 with a normalization scalar P50.  You state that because difTarget 
describes an observable treatment difference, it is easier to understand than the theoretical 
effect at infinitely high doses, and its estimation is usually better than that of the Emax 
parameter.  In the submitted document, benefits of the proposed method are not clearly 
demonstrated compared to the standard Bayesian Emax model.  Provide an example of 
comparison between the proposed method and the standard Bayesian Emax model. 

Response 5

The two parameterizations yield equivalent models, although the subsequent prior 
specifications may be somewhat different.  The primary benefit of using the difTarget 

09
01

77
e1

98
2d

e5
e1

\A
pp

ro
ve

d\
A

pp
ro

ve
d 

O
n:

 2
8-

S
ep

-2
02

1 
18

:3
3 

(G
M

T
)



Qualification Opinion
Response to FDA Request for Information 14 Sep 2021

PFIZER CONFIDENTIAL
Page 9

parameterization is interpretability.  When data are available to support a more informative 
distribution, the data almost always pertain to one (usually the highest) of the doses under 
study.  When more diffuse prior distributions are specified, perhaps imposing only biological 
plausibility, we found that teams considered the plausible response range for the highest dose 
even when the Emax parameter was intended, because issues such as safety limitations made 
consideration of extremely high doses nonsensical. 

The difference in the resulting posterior inferences about dose response within the observed 
dosing range between the parameterizations is typically inconsequential.  The posterior 
medians and 90% posterior intervals for the placebo adjusted response at each tested dose 
using the two different parameterizations for the example in Section 3.2.2 are in Table 1
below.  The prior distributions for the placebo response, difTarget, and  the Emax parameter 
were set to diffuse values.  Not only are the parameterizations different for the two fits in 
Table 1, but an older prior distribution based on an earlier version of the meta-data was used 
for the Emax parameterization (still available in the clinDR package as function 
prior.control, but now deprecated).  This prior did not include any prior correlation between 
parameters, and it used a different mathematical form for the Hill parameter, l (Thomas and 
Roy, 2017).  The impact of the differing parameterizations and prior distributions on 
inferences for the key dose response measures is very limited. Bigger differences are 
sometimes observed for the individual model parameters, some of which may be ill-
determined by the data, which makes them less reliable and more dependent on prior 
assumptions.  We routinely de-emphasize the reporting of the model parameters for this 
reason. 

A final point is the difTarget parameterization tends to yield better behaved parameter 
distributions that are closer to the optimal conditions for the MCMC algorithms generating 
them.  Figure 3 has a scatterplot matrix of the MCMC generated parameters using the 
difTarget parameterization.  Figure 4 has the corresponding plot for the Emax 
parameterization.  The difTarget parameterization yields posterior distributions for the 
parameters closer to ideal independent normal distributions.  This behavior has been typical 
in our experience.  The one known disadvantage of the difTarget parameterization is that it 
does not directly constrain the Emax parameter, so when the Emax parameter is poorly 
determined, the resulting posterior distribution for the Emax parameter can include a few 
extreme values.  This is managed by educating users and using posterior medians and 
posterior percentiles by default in the package reporting functions rather than posterior means 
and standard deviations. 
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Table 1. Posterior median and 90% posterior interval for model-based estimation 
of the placebo adjusted dose response at each tested dose computed using 
the fitDif and Emax parameterizations/prior distributions

Placebo-adjusted dose response

Parameterization 2 5 10 20 30

difTarget
-0.43  

(-0.67,-0.22)  

-0.63

(-0.84,-0.43)

-0.76

(-0.94,-0.58)

-0.86

(-1.04,-0.68)

-0.91

(-1.10,-0.71)

Emax
-0.42

(-0.64,-0.21)

-0.60

(-0.78,-0.41)

-0.74

(-0.91,-0.57)

-0.86

(-1.04,-0.69)

-0.93

(-1.13,-0.74)

Figure 3. Matrix scatter plot of the MCMC generated parameters using the fitTarget 
parameterization for the example in Section 3.2.2.
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Figure 4. Matrix scatter plot of the MCMC generated parameters using the Emax 
parameterization for the example in Section 3.2.2

s

Question 6

In Section 2.2.2, you state that the binary endpoints were analyzed along with the continuous 
endpoints using approximate weighted normal likelihoods. From the information provided, it 
is not clear how you used the weighted normal likelihoods.  Clarify. 

Response 6

For continuous endpoints, the data for a compound consists of a sample mean for each dose 
group and its standard error.   Fully efficient estimation (under the usual normal-distribution 
modeling assumptions) can be achieved from this aggregated data using weighted least 
squares (and its Bayesian analog) with the weight assigned to each dose group sample mean 
inversely proportional to its squared standard error.  While the weighting produces efficient 
estimation of the parameters determining mean response, the naive estimation of the residual 
variance term is poor (the degrees of freedom is the number of dose groups less the number 
of model parameters).  The sample means and their SE were thus supplemented by the 
pooled within dose group sample (squared) SD with chi square distributions in the modeling 
to create a complete set of sufficient statistics. This is straightforward to implement with 
flexible general-purpose Bayesian computation software such as STAN. 

A similar approach was used for binary endpoints.  The dose group sample means become 
sample proportions.  To both improve the normal approximation to the distribution of the 
sample proportions and perform the dose response modeling on a more appropriate scale, the 
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dose group sample proportions were logit-transformed.  The standard errors of the logit-
transformed sample proportions were computed using the usual asymptotic formula.  The 
logit-transformed proportions were then input with weights inversely proportional to their 
squared standard errors.  The binary contributions are somewhat simpler because they do not 
require estimation of residual variance. The normal approximation to the logit-transformed 
proportions was utilized because preliminary checking showed it had little impact on the 
hierarchical model fitting, and it was much faster when fitting the data from 200 compounds 
simultaneously, which can require several hours.   

When implementing the Bayesian Emax model for binary endpoints for a new compound, the 
clinDR package implements the full Bernoulli/Binomial likelihood. 

Question 7

In Section 2.3, you provided 90% prediction intervals for the log� and logED50/P50 from 
several different hierarchical prior distributions to evaluate the sensitivity of the resulting 
predictive distributions. Appendix A and Appendix B describe prior distributions and 
posterior estimates of each model respectively. We recommend providing corresponding 
posterior/predictive posterior estimates (and 90% intervals) for the difTarget so to clinically 
interpret the impact of different hierarchical prior distributions. Provide the results in a table 
for the median and 90% intervals.  

Response 7

The hierarchical models provide succinct summaries of the meta-analysis results for the 
and ED50 parameters.  They also form the basis for the proposed prior distributions for these 
parameters in future applications.  We provided detailed summaries from the meta-analyses 
for these parameters for these reasons.  A hierarchical model for difTarget was not developed 
for reasons given in Section 2.  Instead, separate prior/posterior distributions were created for 
each of the 208 historical compounds included in the meta-analysis.  We have not planned to 
tabulate the results for difTarget because this would yield 208*8=1664 rows (8 models were 
evaluated).  Note that the posterior distributions of difTarget for these historical compounds 
do not have a direct role in future analyses.  Our response to Comment 5) compares 
summaries of posterior distributions of placebo-adjusted dose response for the example in 
Section 3.2.2 for two different prior distributions, which differ in more ways than the 8 priors 
evaluated in the report.  It may serve as a better indication of prior sensitivity. 

Question 8

In Section 2.4, you proposed to use the difference in response between the best of the lower 
doses and the highest dose for goodness-of-fit statistics (GOF) to detect non-monotone 
response.  We need further information on the following points: 

Question 8a

Clarify whether you used any cut off value for the GOF posterior predictive in identifying 
non-monotone dose response.  Also, please clarify whether you checked other aspects of the 
data other than non-monotone response for accessing the model fit. 
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Response 8a

In applications to new compounds, a GOF predictive value ≤0.05 will initiate a careful 
review of available data (of different types) to determine if primary reporting should be 
shifted to pairwise comparisons rather than remain model based.  The 0.05 boundary is 
partially due to convention, but exploration of false positive and false negative findings of 
non-monotone trends using simulation (Thomas and Roy, 2017) support the use of the 0.05 
boundary as a reasonable compromise between these two types of errors.  Any boundary is of 
course somewhat arbitrary, so the GOF assessment is always supplemented by graphical 
displays, assessment of other data sources (e.g., drug concentrations), biological plausibility 
supported by mechanistic biomarker data, experience with related compounds, etc.  Based on 
other data sources, a GOF predictive p-value somewhat >0.05 could still result in a tentative 
rejection of the model.   

The two compounds with non-monotone response documented in the report have GOF 
predictive values <0.05.  They were highlighted in the report because they are the only 
compounds with substantial data from other sources confirming the findings.  They were not 
included in the hierarchical model fitting.  There were four compounds with non-monotone 
GOF predictive values <0.05 included in the hierarchical modeling. 

Two other GOF predictive tests were computed for each compound as part of the meta-
analysis.  As discussed in response to comment 8 c), the upper tail of the non-monotonicity 
check (or equivalently, one minus the predictive probability so low values serve as a 
warning) also serves as a check for unexpected high deviations from the dose response 
predicted by the fitted model.  Another GOF test included in the meta-analyses checked for 
more increase in response at the lowest doses than predicted by the model.  As noted on p. 20 
in the report, the results from this GOF test were unremarkable and thus not reported.  The 
latter test has not been implemented within the clinDR package to date, but if it or other tests 
prove useful, they can be rapidly implemented because they are simulation-based and do not 
require analytical approximations.

Question 8b

You calculated GOF statistics from the compound-indications in the meta-data. Gelman et al 
(2013) suggested not to adjust for multiple comparisons when using more than one test 
statistic.  Explain why this should or should not be applied in this application.  

Response 8b

All GOF tests in our report, and in applications to dose response modeling, the fit 
probabilities are not adjusted for multiplicity.  Figure 5 in our report, and the text describing 
it, do place the GOF fit probabilities with the context of evaluating numerous compounds 
with the objective of determining how frequently we expect to encounter non-monotone dose 
response.  The primary purpose of that display is not to assess non-monotonicity for a 
specific compound, although it does have value for that objective. The aggregate assessment 
in Figure 5 does not contradict the advice from the reference, which is intended for reporting 
of multiple distinct features of model fit within a single study.  While assessment of 
multiplicity regarding the GOF tests is not part of our routine practice, understanding the 
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impact of sampling variability and multiplicity is important when interpreting the GOF 
results and the need for supplemental supporting information. 

Question 8c

You identified TAID = 1001 with the high fit statistics where the highest dose performed 
better than expected compared to the lower doses.  Clarify how the drug development is 
impacted when the model prediction is better for the highest dose.   

Response 8c

This is an older compound from a company ended by a merger, so it difficult to know how 
the biomarker data may have guided dose selection.   We have not had a similar internal 
example and thus suspect this may be a rare situation. Numerically, we expect the effect at 
the highest dose to be under-estimated, but the estimated curve will still display an increasing 
effect at higher doses due to the presence of a large effect at the highest dose. The plot for 
TAID=1001 illustrates this as the model under-estimates the effect for the highest dose while 
over-estimating the effect for the second highest dose, but it still displays a large increase in 
effect between these doses. 

Most settings where the model-based estimate appreciably exceeds the observed sample 
mean/proportion at the highest dose are covered by our evaluation of non-monotone dose 
response, which is extensively discussed elsewhere. This occurs because the highest dose 
has leverage in the model fitting, so the model tends to fit the observed response at the 
highest dose well except when the monotonicity of the model makes this impossible. Based 
on visual inspection of the fitted dose response curves in Appendix C, the results for protocol 
A3071017, compound TAID=4, displays the largest discrepancy between the model fit and 
the sample mean without also displaying potential non-monotone behavior. The dose 
response for the compound was well studied and has high signal-to-noise 
(endpoint: HDL). There were 3 studies with QD dosing and 2 studies with BID dosing. The 
one potentially discrepant data point is from the QD dosing. Without accounting for 
multiplicity, this data point is of some concern because it lies slightly below the 95% 
posterior prediction interval, so a one-sided GOF test would yield a value below 0.025 (Our 
response to Comment 10 includes more information about using these intervals to form GOF 
tests where we have not pre-planned one.) In a similar situation in the future, we would 
likely evaluate exposure response to check if this discrepancy might be due to differences 
between the QD and BID regimens. However, all other data from the 5 studies are consistent 
with the model and they do not display a difference between QD and BID doses, so we think 
this is likely sampling variability expected from a search of over 200 examples with more 
than 4 sample means/proportions per compound. Note also that the lower sample mean in 
study A3011017 still exceeds the mean and model fit at the next lower dose, so the 
qualitative conclusion that dose response is increasing in the upper portion of the studied 
dosing range would not change if the less favorable sample mean value were used.
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Question 9

In Appendix A, you stated that to simplify specification of prior distributions for the non-
hierarchical parameters E0jk and Emaxj, the continuous endpoints were normalized to have 
an overall mean of 0 and SD of 1. Each binary endpoint was normalized so that the mean of 
the logit of the dose group proportions weighted by their sample sizes is 0.  However, based 
on the clinDR package, it appears that there is no procedure for the data normalization.  
Please clarify this discrepancy.  If the normalization is used, clarify how the data 
normalization affects the study results.  

Response 9

Appendix A gives details of the prior distributions utilized in the meta-analysis of 
approximately 200 historical compounds.  Hierarchical models are specified for the 
distributions of the ln() and ln(ED50/P50) across compounds. Hierarchical modeling of 
variation in placebo and drug response across compounds was not performed for reasons 
noted in Section 2.  Instead, independent diffuse prior distributions were specified for these 
numerous parameters (at least 2 per compound, with additional placebo parameters when 
there are multiple studies for a compound).  Specifying appropriately chosen distributions 
specific to each compound to achieve 'diffuse' prior distributions would require considerable 
programming and context review. An efficient approach to achieve this was to 'normalize' the 
data for each compound so the location (overall mean) and scale (SD) are the same.  This 
allowed us to re-use one diffuse prior distribution for each placebo response parameter, and 
one diffuse prior distribution for each drug response.  The final results were back-
transformed to the original scales for reporting results of the meta-analysis.  Note that this 
norming does not change the  or ED50 parameters, which are invariant to these scale 
changes.  

The hierarchical distributions for ln() and ln(ED50/P50) from the meta-analysis provide the 
empirical basis for the prior distribution of these parameters for future compounds.  The 
distributions of the placebo and drug response from the meta-analysis are not used.  When 
the prior distributions for the placebo and drug response parameters are specified for a new 
compound under study, the scale of the endpoint is known and very important. The prior 
distributions, whether diffuse or informative, are thus created specifically for the endpoint.  
There is no norming of the endpoint data, this is a computational convenience only utilized in 
the large-scale meta-analysis of the historical data. 

Question 10

In Appendix C, you identified two compounds, TAID 33 or 2051, for potential non-
monotone response based on the goodness of fit statistics. Yet simple visual inspections 
identified many cases, which raises questions about their model fittings (e.g., ID 2034, 2043, 
2057, etc.), though they are not as extreme as TAID 33 or 2051.  Clarify those compounds’ 
model fits as well as model diagnostics. 
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Response 10

As noted in the response to comment 8a), compounds 33 and 2051 were highlighted in the 
report because we have additional evidence of non-monotone response for them, and they 
were excluded from the hierarchical modeling.  

The compounds 2034 and 2057 have non-monotone GOF predictive fit probabilities of 0.091 
and 0.078, respectively.  These are external compounds, so we have little information 
available to further assess potential non-monotonicity for these compounds.  For internal 
compounds, a reported fit probability, and plots like these would likely initiate a careful 
review.  The power to detect non-monotonicity for any given compound is typically limited.  
However, if non-monotone trends were prevalent, we should observe an excess of lower fit 
probabilities (i.e., between 0.05 and 0.25) like those identified in comment 10.  When viewed 
in aggregate, Figure 5 in the report shows that the number of compounds displaying such 
trends is what would be expected if the data from all compounds were generated from 
monotone Emax models.  If there were fewer plots like those for compounds 2034 and 2057, 
it would provide evidence that the data had been sanitized and selectively reported.  It is 
apparent that all doses studied in these examples were on the plateaus of the dose response 
curves.  Under these conditions, it is more likely than not that the highest dose will not have 
the best sample mean.  We suspect that these common poor dosing designs producing this 
sampling artifact have created the perception that non-monotone response is prevalent.    

The outlier sample proportion for an interior dose of compound 2043 is again consistent with 
the deviations expected for sample means/proportions about the Emax fitted curves.  As 
noted in response to comment 8a), we constructed specific GOF predictive probabilities to 
assess model deviations near the low and high doses, and to check for non-monotone 
response.  A more general predictive check, which includes assessment of outliers of 
unspecified forms, was also supplied by plotting 95% posterior predictive intervals for each 
dose group sample mean/proportion.  These are the grey intervals on the dose response plots.  
The outlier for compound 2043 is at the low end of the predictive interval so a corresponding 
unadjusted one-sided posterior predictive probability for this outlier is approximately 0.025.  
Placed into context, this is an unremarkable outlier because there are 208 compounds 
included in the hierarchical modeling with more than four dose groups per compound.  Fewer 
such outliers would again be evidence of selective reporting.  Compound 2043 is also an 
external compound so we have little additional information to assess the possibility that this 
outlier could be invalid data or be due to inadequacy of the Emax model.  We do have 
considerable experience with immunology compounds for treating rheumatory arthritis, 
however, and compounds in this therapeutic area using the ACR20 endpoint have not 
displayed unusual dose response, so we think it likely this outlier is due to the expected 
sampling variability. 
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“Empirically Based Bayesian Emax Models for Dose Response Design and Analysis”
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BACKGROUND

21 April 2021, Pfizer submitted a Fit-for-Purpose (FFP) Request for an FDA Qualification 
Opinion on “Empirically Based Bayesian Emax Models for Dose Response Design and 
Analysis.”  On 14 September 2021, Pfizer received comments and requests for information 
on this submission from the FDA and submitted a response. On 12 November 2021, Pfizer 
received additional comments and requests for information based on the Pfizer response.  
The Pfizer responses to these follow-up comments are provided below.  The question 
numbering of the 14 September 2021 FDA request is maintained; not all questions received 
follow-up comments from the FDA.

AGENCY REQUEST FOR INFORMATION AND SPONSOR RESPONSE

Clinical Pharmacology

Question 1 Follow-up

We acknowledge that you conducted a comparison between maximum likelihood or non-
linear least squares estimation with the proposed Bayesian method in section 3.3.   

• “Population analyses” refers to a typical practice of implementing a non-linear mixed 
effect model included in PK/PD packages such as NOMEM, Monolix, etc.  Model 
parameters can be fixed or random.  Relevant covariates can be used to explain partial 
random effect.  This feature is helpful when multiple studies are included in the analyses.   

• We understand that the poor performance of the proposed Bayesian method under a 
setting of using diffusive priors for all model parameters seems unfavorable.  However, we 
believe it is important to ensure comparable performance of the Bayesian method under non-
informative priors with the frequentist approach since it is not feasible to evaluate whether the 
priors are beneficial enough as the magnitude of informativeness will depend on the data from 
the new drug. 

• We speculate that the poor performance of the Bayesian method under non-
informative priors is likely due to reparameterization including EC50 to log(EC50/P50) and 
Emax to difTarget.  The former used a historical P50 as a constant scaler which may not be 
efficient and the latter created a complicated correlation among the model parameters.  We 
recommend you investigate the potential concerns and make efforts to further improve the 
model to facilitate the review.

Response 1

The Pfizer response to the FDA follow-up comment is provided in the attached file 
“diffuseTabs.pdf”.   
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Statistics

Question 2 Follow-up

FDA Comment to response 2:  

• In Sections 2 and 3, you described how you derived parameters for the prior 
distributions of the ln(�) and ln(ED50/P50) based on the historical data.  However, it is 
still not clear how you will implement these priors and correlation structures in a future 
application to a new compound.  It appears that the source code in a ClinDR package 
includes this information.  Provide in a written form how you will implement the priors for 
the ln(�) and ln(ED50/P50) and their correlation structures in the future application.

Response 2

The Bayesian model is implemented in STAN using the rstan interface to R in the clinDR 
package. The STAN code implementing the model is in the file mrmodel.pdf, which is 
included in our response and distributed as part of the package source code.  It can be 
compiled once [compileStanModels()] when the package is installed, which substantially 
speeds up subsequent use.  The model code is dense because it implements several options:  
continuous and binary data, sigmoidal and hyperbolic Emax models, optional baseline 
covariates, 0, 1, or multiple E0 intercepts, and patient-level and grouped data.  We describe 
the basic use case with a sigmoid model, patient-level data, and one intercept (protocol) with 
no baseline covariates.  Applications of the prior distribution like those for future 
applications are in Section 3.2 of the original submission.

The prior means, scale parameters, and correlation defining the prior distribution are 
collected into a ‘prior’ object that is passed to the STAN model using a package function:

emaxPrior.control(epmu=NULL,epsca=NULL,

difTargetmu=NULL,difTargetsca=NULL,

dTarget=NULL,p50=NULL,

sigmalow=NULL,sigmaup=NULL,

effDF=parmDF,parmDF=5,

loged50mu=0.0,loged50sca=1.73,

loglammu=0.0,loglamsca=0.425,parmCor=-0.45)

The default values, which were derived from the analysis of the large collection of dose 
response studies, are strongly recommended.  They are ordinarily changed only for testing 
and sensitivity analyses.  The prior mean and scale parameters are given on the logit scale 
when the response is binary.
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Prior distributions for E0 and difTarget:

These are described first because they are the least complex.  They are also described in the 
clinDR documentation.  Both parameters have independent t-distributions.

emaxPrior.control STAN Role Description

epmu epmu prior mean of intercept

epsca epsca t-distribution scale parameter for the intercept

effDF[1] e0DF Degrees of freedom for the prior t-distribution

dTarget dTarget Dose matching difTarget efficacy

difTargetmu difTargetmu Prior mean of difTarget at dTarget

difTargetsca difTargetsca t-distribution scale parameter for difTarget 

effDF[2] diftDF Degrees of freedom for the prior t-distribution

The code implementing these priors is:

e0[1]~student_t(e0DF,epmu,epsca);

difTarget~student_t(diftDF,difTargetmu,difTargetsca);

Note that parameters are independent unless they are given a multivariate distribution or 
share a common stochastic parent in their definition.

Prior distributions for the ln(�) and ln(ED50/P50):

emaxPrior.control STAN Role Description

loged50mu loged50mu Prior mean of log(ED50/P50) [typically 0]

loged50sca loged50sca t-distribution scale parameter for the log(ED50/P50)

loglammu loglammu Prior mean of log(�) [typically 0]

loglamsca loglamsca t-distribution scale parameter for the log(�)

parmCor parmCor Prior correlation of log(ED50/P50) and log(�)

parmDF parmDF DF for the bivariate t-distribution
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The code implementing the bivariate-t prior distribution first assigns the input values to 
bivariate vectors and a 2x2 variance-covariance matrix:

scavar[1,1]=square(loged50sca);

scavar[1,2]=loged50sca*loglamsca*parmCor;

scavar[2,1]=scavar[1,2];

scavar[2,2]=square(loglamsca);

cscavar=cholesky_decompose(scavar);

zvec[1]=0.0;

zvec[2]=0.0;

muvec[1]=loged50mu;

muvec[2]=loglammu;

The Cholesky decomposition is computed to accelerate STAN execution because it can be 
done once here, and not repeated for each MCMC simulation.  zvec is just a bivariate zero 
vector for computational convenience.  Recall that muvec will also be zero in most 
applications.

The one minor complication is that STAN can generate draws from a multivariate normal, 
but it does not have a built-in function for the multivariate t-distribution.  This can easily be 
created by generating an independent chi-square variable, and then scaling the multivariate 
normal draw by the square root of the chi-square variable divided by its DF:

parmvec~multi_normal_cholesky(zvec,cscavar);

chi2var[1]~chi_square(parmDF);

parmvect=muvec+parmvec/sqrt(chi2var[1]/parmDF);

ed50=p50*exp(parmvect[1]);

loglambda=parmvect[2];

lambda=exp(parmvect[2]);
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Finally, the Emax parameter can be derived from the other generated parameters:

emax=(difTarget)*(ed50^lambda+dTarget^lambda)/dTarget^lambda;

For continuous endpoints, a prior distribution for the residual SD is also required.  The lower 
and upper bounds of a uniform distribution are also part of the emaxPrior.control object:

sigma[1]~uniform(sigmalow,sigmaup)

Likelihood

First, the mean (or logit probability) is computed for each patient.  For continuous data, the 
SE for the mean is also computed.  With patient-level data, nv[i] is 1.

for(i in 1:N){

   emx[i] = e0[1] + (emax *   

            pow(dv[i],lambda))/(pow(ed50,lambda)

           +pow(dv[i],lambda));

   sex[i]=sigma[1]/sqrt(nv[i])

}

The ‘pow’ function evaluates the first argument raised to the power given in the second 
argument.  STAN then implements the likelihood in vectorized form

For continuous data:

yv ~ normal(emx,sex);

For binary data:

yvb ~ binomial(nvb,inv_logit(emx))

The mrmodel code file is attached as a pdf.
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PFIZER CONFIDENTIAL
Page 7

Question 6 Follow-up

FDA Comment to response 6:

• Clarify whether the weighted normal likelihoods were utilized only in a meta-analysis 
of historical data and will not be used in a future application to a new compound.

Response 6

The weighted normal likelihood and its use approximating logit binary response data was 
only for the meta-analysis of historical data.  The response to the first question provides 
details on the implementation of the Bayesian method to future dose response data sets.  The 
only exception to this statement occurs if the method is applied to external data sets where 
only summaries at the dose group level are available.  The code in the clinDR package can fit 
such data, and for continuous endpoints, this is a weighted normal likelihood.  For binary 
data, even when only summary data are available, the binomial distribution is utilized, not 
the weighted normal approximation to it. 

Question 7 Follow-up

FDA Comment to response 7:

• In our email dated September 14, 2021, we requested that you 
provide posterior/predictive posterior estimates for difTarget.  On September 28, 2021, you 
responded that you had not planned to tabulate the results for difTarget because this would 
yield 208*8=1664 rows (eight models were evaluated) and the posterior distributions 
of difTarget for the historical compounds did not have a direct role in future analyses. 
 A prior sensitivity analysis of difTarget is needed to assess the uncertainty of the parameter.  
Provide the sensitivity analysis for difTarget for a specific compound using the eight models 
you considered.  

Response 7

We supply summaries of the posterior distributions derived from the eight different prior 
models for two well-known compounds.  The first is atorvastatin (TAID=6),  a small 
molecule with continuous endpoint (percent change in LDL), high signal-to-noise dose 
response (effect size for highest dose >5), and a 32-fold dosing range studied.  The second is 
adalimumab (TAID=2002), a biological with a binary endpoint (clinical remission) for the 
indication of Crohn’s disease, a moderate signal-to-noise (observed responder proportions of 
0.36 and 0.12 for the high dose and placebo), and only a 4-fold dosing range studied.  These 
compound characteristics cover much of the range of the compounds in the meta-data.  
Percentiles from the posterior distribution corresponding to the prior distributions are 
summarized in Table 1 (atorvastatin) and Table 2 (adalimumab).  The prior models are 
described in Appendix A of the submission document.  The posterior distributions are in 
practical agreement, and do not display systematic differences across the two sampled 
compounds.  Note when reviewing the results in Table 2, the difTarget parameter is the 
placebo-adjusted difference on the logit-transformed scale.
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Qualification Opinion
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PFIZER CONFIDENTIAL
Page 8

Table 1. Percentiles of the posterior distribution corresponding to the eight prior 
models:  atorvastatin (TAID=6)

mod1 mod2 mod3 mod4 mod51 mod52 mod101 mod102

5% -70.9 -70.1 -71.0 -70.4 -71.7 -72.0 -69.0 -68.1

10% -69.5 -68.7 -69.7 -69.2 -70.4 -70.5 -67.7 -66.9

25% -67.2 -66.4 -67.5 -66.9 -68.0 -68.2 -65.6 -64.6

50% -64.6 -63.9 -65.0 -64.4 -65.4 -65.6 -63.2 -62.2

75% -62.2 -61.3 -62.5 -61.9 -62.8 -63.0 -60.9 -59.8

90% -60.1 -58.9 -60.3 -59.6 -60.5 -60.7 -58.8 -57.5

95% -58.8 -57.6 -58.9 -58.3 -59.1 -59.2 -57.7 -56.1

Table 2. Percentiles of the posterior distribution  corresponding to the eight prior 
models:   adalimumab (TAID=2002)

mod1 mod2 mod3 mod4 mod51 mod52 mod101 mod102

5% 0.66 0.65 0.54 0.75 0.67 0.68 0.66 0.66

10% 0.79 0.79 0.71 0.88 0.81 0.82 0.79 0.81

25% 1.03 1.03 0.98 1.10 1.06 1.06 1.03 1.03

50% 1.30 1.29 1.27 1.34 1.33 1.34 1.30 1.31

75% 1.57 1.56 1.55 1.59 1.60 1.61 1.57 1.58

90% 1.84 1.81 1.81 1.82 1.85 1.86 1.83 1.83

95% 1.99 1.97 1.96 1.97 2.01 2.01 1.98 1.98

Additional FDA comment

For the proposed Fit For Purpose review, simulation results for meta-analyses may not be 
necessary since the package does include the meta-analyses with real data. However, 
simulation studies for meta-analyses are recommended for a complete manuscript.  During 
the design phase for future drug development programs, we recommend that you complete 
simulation studies demonstrating your method is applicable for multiple studies with 
different sample size or different levels of heterogeneity.

Response to Additional Comment

Please see the attached file “combStudies.pdf”.
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data { 
    int<lower=0> N; // number of patients/groups  
    int<lower=0> nprot; // number of protocols-strata 
  int<lower=0> protv[N]; 
  int<lower=0,upper=1> cont;  //indicator of data type 
  int<lower=0,upper=1> sigmoid;  //indicator of model type 
  int<lower=0,upper=1> gp; 
  int<lower=0,upper=1> intercept; 
  int<lower=0> nbase; 
   
  //continuous data 
    real yv[N]; //  outcome variable 
  real<lower=0> nv[N]; // number patients per group; real for 
arithmetic 
  //binary data 
    int yvb[N]; //  outcome variable 
  int<lower=0> nvb[N]; // number patients per group 
   
    real<lower=0> dv[N];   
    matrix[nbase ? N : 0,nbase ? nbase : 0] xbase; 
     
  real<lower=0> df2;   // saturated df divided by 2 
  real<lower=0> ssy; 
    real epmu; 
  real<lower=0> epsca; 
    real difTargetmu; 
  real<lower=0> difTargetsca; 
  real<lower=0> dTarget; 
  real<lower=0> sigmalow; 
  real<lower=0> sigmaup; 
  real<lower=0> p50; 
    real<lower=0> loged50mu; 
    real<lower=0> loged50sca; 
    real<lower=0> e0DF; 
    real<lower=0> diftDF; 
    real<lower=0> parmDF; 
    real<lower=0> loglammu; 
    real<lower=0> loglamsca; 
  real parmCor; 
  vector[nbase ? nbase : 0] basemu; 
  cov_matrix[nbase ? nbase : 1] basevar;  
} 
transformed data{ 
  cholesky_factor_cov[nbase ? nbase : 1] cbvar; 
  vector[2] zvec; 
  vector[2] muvec; 
  cov_matrix[2] scavar; 
  cholesky_factor_cov[2] cscavar; 
 
  cbvar=cholesky_decompose(basevar); 
 
  if(sigmoid){ 
    scavar[1,1]=square(loged50sca); 
    scavar[1,2]=loged50sca*loglamsca*parmCor; 
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    scavar[2,1]=scavar[1,2]; 
    scavar[2,2]=square(loglamsca); 
    cscavar=cholesky_decompose(scavar); 
    zvec[1]=0.0; 
    zvec[2]=0.0; 
    muvec[1]=loged50mu; 
    muvec[2]=loglammu; 
  // assign defaults to avoid compiler error 
  }else{       
    scavar[1,1]=1.0; 
    scavar[1,2]=0.0; 
    scavar[2,1]=scavar[1,2]; 
    scavar[2,2]=1.0; 
    cscavar=cholesky_decompose(scavar); 
  } 
} 
parameters{ 
    vector[intercept ? nprot : 0] e0; 
    real difTarget; 
  vector[sigmoid ? 2 : 1]parmvec; 
  vector<lower=sigmalow,upper=sigmaup>[cont ? 1 : 0] sigma; 
  vector[nbase ? nbase : 0] bslope; 
  vector<lower=0>[sigmoid ? 1 : 0] chi2var; 
} 
transformed parameters{ 
    real <lower=0> lambda; 
  real loglambda; 
    real<lower=0> ed50; 
  real led50; 
  real emax; 
  real<lower=0> tau2[cont ? 1 : 0]; 
  vector[sigmoid ? 2 : 1]parmvect; 
   
    if(sigmoid){ 
   parmvect=muvec+parmvec/sqrt(chi2var[1]/parmDF); 
   ed50=p50*exp(parmvect[1]); 
   loglambda=parmvect[2]; 
     lambda=exp(parmvect[2]); 
    }else{ 
   parmvect=loged50mu+parmvec; 
   ed50=p50*exp(parmvect[1]); 
   loglambda=0.0; 
   lambda=1.0; 
  } 
  led50=log(ed50); 
  if(cont){ 
   tau2[1]=1/(2*sigma[1]*sigma[1]); 
  } 
  emax=(difTarget)*(ed50^lambda+dTarget^lambda)/dTarget^lambda; 
} 
 
model{ 
    vector[N] emx; 
  vector[N] sex; 
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  if(intercept){ 
   for(i in 1:nprot){ 
    e0[i]~student_t(e0DF,epmu,epsca); 
   } 
  } 
    if(sigmoid){ 
   parmvec~multi_normal_cholesky(zvec,cscavar); 
   chi2var[1]~chi_square(parmDF); 
  }else parmvec[1]~student_t(parmDF,0.0,loged50sca); 
    if(cont){ 
   sigma[1]~uniform(sigmalow,sigmaup); 
    } 
 
    difTarget~student_t(diftDF,difTargetmu,difTargetsca); 
     
    for(i in 1:N){ 
   if(intercept){ 
     emx[i] = e0[protv[i]] + (emax * 
pow(dv[i],lambda))/(pow(ed50,lambda) 
         
 +pow(dv[i],lambda)); 
   }else{ 
     emx[i] = (emax * 
pow(dv[i],lambda))/(pow(ed50,lambda) 
         
 +pow(dv[i],lambda)); 
   } 
   if(cont) sex[i]=sigma[1]/sqrt(nv[i]); 
    } 
 
  if(nbase){ 
   bslope~multi_normal_cholesky(basemu,cbvar); 
   emx = emx + xbase*bslope; //emx; 
  } 
   
    if(cont){ 
     yv ~ normal(emx,sex); 
   if(gp){ 
    ssy ~ gamma(df2,tau2[1]); 
   }   
  }else{ 
   yvb ~ binomial(nvb,inv_logit(emx)); 
  } 
} 
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1 Diffuse prior distribution

The simulation studies described in Sections 3.3.1, 3.3.2 and Appendix H of the original
submission were repeated using a diffuse prior distribution for the Emax model parameters.
Independent uniform prior distributions were applied to each parameter. The parameters
were not normalized (e.g., the P50 was not used) or transformed except that the uniform
prior distribution was applied to log(ED50) rather than ED50, as is commonly done. The
Emax parameter was used instead of the difTarget parameter. The priors were chosen to be
diffuse with respect to the dose response designs and parameters in the simulation study,
but the uniform bounds were not set to extremely large values to avoid numerical underflow
and overflow problems:

E0 ∼ uniform(−20, 20) ,

Emax ∼ uniform(−20, 20) ,

log(ED50) ∼ uniform(−log(10000), log(10000)) ,

λ ∼ uniform(0, 10) .

The results are graphically summarized in the appendix at the end of this document.
The Figure numbers in the appendix match the corresponding Figure numbers in the
submission document. The contents and format of the results are described in Section 3.3
of the submission document. The results for the pairwise comparisons and modified ML
estimation are unchanged. The results in the appendix are for the ’Diffuse Bayes Emax’
method. In addition to comparing the Diffuse Bayes Emax performance to the pairwise
comparision and modified ML methods, the Diffuse Bayes results can be compared to
the Bayes Emax results using the more informative prior distributions in the submission
document with the same Figure number. Note however that the scales on the plot may differ
substantially. Common scales or merged plots were not attempted because the scales are
often so different that the results for most methods would compressed into a small portion
of the display to include one ill-behaved method. Note also that the simulated population
models are defined relative to the informative prior distribution (e.g., how much the ED50

differs from the P50), but these values are not used in the construction of the diffuse prior
distribution.

With the diffuse prior distribution, the MCMC numerical methods evaluating the pos-
terior distributions perform poorly in many of the simulation settings. Diagnostic checking
of the MCMC draws from the posterior distributions raise concerns for many of the sim-
ulated data sets. This is consistent with the failure the numerical optimization methods
to converge to maximum likelihood estimates in a majority of the simulated data sets for
a sigmoidal Emax model. Unlike the modified ML approach, however, no model substitu-
tion or other alterations (e.g., fixing a parameter value) were implemented for the diffuse
Bayesian method. As noted below, the MCMC methods perform worse in the realistic set-
tings with fewer doses and lower signal-to-noise. All of the results for the diffuse Bayesian
approach should be interpreted cautiously considering their problems with numerical eval-
uation. Note that the numerical problems are NOT due to the choice of parameterization.
They occur because the Emax model is not identified in many applications. When com-
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bined with diffuse prior distributions, the resulting posterior distributions are far from the
asymptotic normal ideal and very difficult to numerically evaluate.

2 Low information settings

The low information settings in the simulation studies were selected to represent the most
common situations in practical applications. With few exceptions, the diffuse Bayesian
Emax model approach performed very poorly in absolute terms, and when compared to
the other methods (even pairwise comparisons). The modified ML approach also performs
poorly, but it is typically better than the diffuse Bayesian approach that proceeds even
when there is evidence that the numerical methods implementing it have failed. While
it was not attempted here, it is likely that performance of the diffuse Bayes approach
would be more similar to the modified ML approach if similar ad hoc methods to swap in
easier-to-estimate models yielding nominally good fits to data were developed.

The Bayesian Emax modeling using the more informative empirically-based prior dis-
tribution performed well, and superior to the other methods over a very wide range of
conditions, including most of the low-information settings. It does not require post hoc
adjustments. As expected, it is most advantageous when the prior distribution is accurate.
Simulated conditions that deviated from the informative prior distribution were intention-
ally included to quantitate when performance of the informative method would deteriorate.
The most pronounced deterioration occurred with unusually steep dose response (high λ,
for example, Figures 43, 51). The primary purpose of the extensive evaluation of past dose
response studies was to conservatively ensure that the deterioration, such as that in Figures
43 and 51, will be rarely encountered in practice.

3 High information settings

High information settings include more well-targeted doses and higher signal-to-noise.
There are studies in the dose response meta-data with similar conditions, but such con-
ditions are the exceptions. The likelihood and posterior distributions are closer to the
asymptotic normal ideal in these settings, so there are fewer and less severe numerical
problems with the diffuse Bayesian methods. The results for the diffuse Bayes and modified
ML estimation are more similar, and neither uniformly dominates the other as measured
by root mean squared error (MSE). The diffuse Bayes posterior intervals do have better
repeated-sampling coverage probabilities than the modified ML methods in these settings.

The performance of the diffuse and informative Bayesian methods are also more similar.
As expected, the more informative prior distribution yielded better results in most settings,
except those already noted (e.g., Figures 43, 51) when the population model deviated from
the prior distribution.

A few additional simulations (not shown) were conducted with additional dose groups
and very high signal-to-noise that yield the theoretical asymptotic normal behavior of the
estimated dose response modeling. The three estimation methods perform similarly and
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well in these settings. Simulations in these settings are useful for testing the computing
code, but they are not indicative of performance in real applications.
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Appendix A Plots of performance with diffuse prior

distributions
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Figure 13: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 2P50, λ = 1. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 15: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 0.5P50, λ = 1. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 17: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = P50/4, λ = 0.8. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 19: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = P50/4, λ = 1.25. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 21: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 4P50, λ = 0.8. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 23: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 4P50, λ = 1.25. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 29: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = P50/10, λ = 0.5. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 31: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = P50/10, λ = 0.8. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 33: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = P50/10, λ = 1.25. For the continuous endpoint, E0 = 1 and difTarget =
0.5, 1.5. For the binary endpoint, the placebo response is 0.25 or 0.1, and the most
effective dose has response of 0.49 or 0.63, respectively.
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Figure 35: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = P50/10, λ = 2.5. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 37: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = P50/4, λ = 0.5. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 39: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = P50/4, λ = 2.5. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 41: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 4P50, λ = 0.5. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 43: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 4P50, λ = 2.5. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 45: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 10P50, λ = 0.5. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 47: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 10P50, λ = 0.8. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 49: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 10P50, λ = 1.25. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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Figure 51: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 10P50, λ = 2.5. For the continuous endpoint, E0 = 1 and difTarget = 0.5, 1.5.
For the binary endpoint, the placebo response is 0.25 or 0.1, and the most effective dose
has response of 0.49 or 0.63, respectively.
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1 Evaluating dose response based on two studies

Data from more than one study are often combined to estimate dose response. Examples
include 1) combining data from a single active dose and placebo in an initial proof of
concept study with a subsequent dose finding study, and 2) combining data from two dose
finding studies where the second study focuses on the lower or upper dosing range in the
first study. The latter situation is simulated here.

The simulation design for the two studies will be based on simulation designs from the
original submission that are graphically summarized in Figures 20-21 of the submission.
The setting with λ = 0.8 and ED50/P50 = 4 was selected as the base case because it
produces data similar to many real dose response curves, and the differences between the
populations parameters and their prior distributions is typical of real applications.

The Low and High Signal designs are simulated. The first study is unchanged from
the original simulations. A second study is then simulated that focuses on the higher
doses. For the Low Signal design, the lowest dose is dropped in the second study leaving
two active doses. For the High Signal design, the two lowest doses are dropped leaving
three active doses. The sample size in each group is the same in both studies, so the total
sample size in the second study is smaller than in the first study. The simulations were
repeated for a continuous and binary endpoint. The first set of four simulated conditions
assume that the placebo response is the same across the two studies. The simulations were
then repeated with a large shift in response between the two studies (1/2 the difference in
response between placebo and the highest dose).

The Bayesian Emax model was fit with common parameters across the two studies
except that a separate intercept (placebo response) was fit for each study, as recommended
in the submission document. Pairwise comparisons were also assessed. For the pairwise
comparisons, the data from common dose groups across the two studies were naively pooled,
as is often done. The modified ML estimation was not implemented because complications
arise when this approach is generalized to fit data from multiple studies.

2 Simulation results

The Bayesian Emax estimation performed well, and better than the pairwise comparisons
in all of the simulations settings. The results are summarized in Figures 1 and 2. Figure
1 corresponds to Figure 21 in the submission. The addition of data from a second trial
reduced the RMSE as expected. The upward (placebo) increase in responses did not
noticeably impact the performance of the Bayesian Emax modeling in Figure 2.

The RMSE of the pairwise comparisons for the higher doses are also improved because
their sample sizes are doubled by the addition of the second design. Note the change in
scales between Figures 1 and 2. The RMSE of the pairwise comparisons for the lower doses
are much larger in Figure 2 because the change in placebo creates bias in the comparisons
for the lower doses that were not included in the second design. The bias is also reflected
in the coverage probabilities for the lower doses. The performance of the pairwise com-
parisons could be improved by incorporating appropriate modeling assumptions. These
improvements are built into the Bayesian Emax approach.
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Figure 1: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 4P50, λ = 0.8. This figure corresponds to Figure 21 in the submission.
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Figure 2: Comparison of RMSE (left) and Coverage (right) for each dose versus placebo.
The ED50 = 4P50, λ = 0.8. The placebo response increased by 1/2 the difference between
placebo and the highest dose compared to the first set of simulations.

2

09
01

77
e1

98
e2

ef
3d

\A
pp

ro
ve

d\
A

pp
ro

ve
d 

O
n:

 1
5-

D
ec

-2
02

1 
17

:4
7 

(G
M

T
)



RESPONSE TO FDA REQUEST FOR INFORMATION

received 07 Mar 2022

FDA Qualification Opinion 
“Empirically Based Bayesian Emax Models for Dose Response Design and Analysis”
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Qualification Opinion
Response to FDA Request for Information 07 Mar 2022

PFIZER CONFIDENTIAL
Page 2

BACKGROUND

21 April 2021, Pfizer submitted a Fit-for-Purpose (FFP) Request for an FDA Qualification 
Opinion on “Empirically Based Bayesian Emax Models for Dose Response Design and 
Analysis.”  On 14 September 2021 and 12 Nov 2021, Pfizer received comments and requests 
for information on this submission from the FDA and submitted responses. On 07 March
2022, Pfizer received additional comments and requests for information based on the Pfizer 
response.  The Pfizer responses to these follow-up comments are provided below.  The 
question numbering refers to 07 March 2022 comments and requests for information.

AGENCY REQUEST FOR INFORMATION AND SPONSOR RESPONSE

Clinical Pharmacology

Question

We simulated data without informative sampling points for Emax model parameters 

such as ED50 and Emax. With simulated data, we found parameter identifiability 

issues became a hurdle for applying the proposed Bayesian Emax model even with 

the informative priors derived from the meta-data analyses. We also observed that 

some study data in the meta-data pool are sparse to inform the model parameters 

as shown in Appendix C of the initial submission package (e.g., on page 69 for 

ID1046 1160.2; on page 80 for ID4009 R668−AD−1224; and on page 81 for ID17 

1008−009). 

To address our concerns, pull some typical data from the meta-data pool within the 

following categories and analyze these data separately either with informative or 

non-informative priors. Submit for further review the results with the data used in the 

analyses. 
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Potential scenarios

Response variables Missing sampling points Number of studies

Continuous Missing to inform Emax Each per therapeutic area if 

available

Missing to inform ED50 Each per therapeutic area if 

available

Binary Missing to inform Emax Each per therapeutic area if 

available

Missing to inform ED50 Each per therapeutic area if 

available

   

Response 

The Pfizer response to the FDA follow-up comment is provided in the attached file 
“cpSectResp3.pdf”.   

Statistics

Question 1

Confirm that the proposed tool will be used to help select the doses in the next 
phase trial or find the optimal design for future studies. Confirm that no hypothesis 
testing (either Bayesian and/or Frequentist) is involved.

Response 1

The purpose of the analyses we propose is to select dose(s) for the next phase (typically 
phase 3).  It is also used to plan phase 2 dose ranging studies and follow-up phase 2 studies 
when needed. We do not use hypothesis testing as an approach to achieve these objectives.  
As noted in Section 3.1.1 of the submission document, a preliminary alpha-controlled test to 
confirm an effect for the compound is often performed.  If the test is not significant, along 
with a simple plot of the dose response data, it provides a rapid cautionary analysis showing 
that the efficacy of the compound or the design of the study was not as planned.  These 
simple hypothesis tests are not the primary output of the study and do not contribute 
substantially to achieving the objectives of the trial.
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Response to FDA Request for Information 07 Mar 2022

PFIZER CONFIDENTIAL
Page 4

Question 2

In your response submitted on December 15, 2021, you referred a ClinDR package 
to describe your model. Your original submission and subsequent responses to our 
information requests are not clear enough to allow FDA to thoroughly review the 
submitted information. Submit a detailed step-by-step algorithm including 
mathematical formulations of the methods you are proposing. The algorithm should 
be self-contained without any need to refer to the software codes. Clearly state all 
the assumptions and choices (e.g., the model, choice of the priors and hyperpriors), 
and what data will be used at each step. Justify any choices you make regarding the 
model, priors and hyperpriors. 

For example, describe the whole procedure for the use case with a sigmoid model, 
patient-level data, and at least two intercepts (protocols) with no baseline covariates. 
Provide the following information for each step of your algorithm and any additional 
information that may be useful.

 Purpose of the step
 Data to be used
 Mathematical formulation (hierarchical structure including priors, 

hyperpriors, likelihood, etc.)
 Justification for the use of proposed prior
 Derived estimates from the procedure
 How the derived estimates will be used in the next step

If any test for goodness of fit is needed, explain in which step such tests should be 
implemented. 

Additional clarity is needed. For example, it is stated or implied that the prior 
distribution for a hypothetical future dose response study - at least for ln(lambda) 
and ln(ED50/P50) - will be the posterior predictive distribution from the Bayesian 
Hierarchical meta-analysis of the “metadata”. However it is also stated that the 
proposed prior for such a hypothetical future dose response study is described as a 
multivariate t-distribution (location and scale translated). Clarify if the MCMC 
software used for the meta-analysis produce a posterior distribution that may be 
characterized as such a multivariate t-distribution. If so, thoroughly describe how this 
is done without referring to R-code.

Response 

The Pfizer response to the FDA follow-up comment is provided in the attached file 
“statSectResp3.pdf”.   
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I Overview

In response to concerns about the performance of the proposed Bayesian Emax modeling

when applied to poor dosing designs, we evaluate the procedure in four extreme settings.

It is common in current practice to encounter dose ranging studies with low signal-to-

noise and only few doses covering a limited dosing range (e.g., high/low dose < 10). This

differs from some pre-clinical applications of similar modeling. The most common extreme

settings occur when the doses appear to cover only the lower ’linear’ portion of the dose

response curve, or when all of the doses appear to be on or very near the plateau of the

dose response. We evaluate four such examples under somewhat differing conditions, two

with ’linear’ response data, and two with data on the plateau only.

The first example in Section II is an evaluation of the dose ranging study for compound

ID=1021. This compound was not included in the query, but we evaluated it because it has

a continuous endpoint that appears to be nearly linear, and it includes a placebo group.

The second compound (ID=1046) evaluated in Section III was identified in the query. Note

that it does not include a placebo group. The methods we proposed can effectively evaluate

studies without a placebo group, but the lack of a placebo group does alter their operating

characteristics. While we applied the modeling here, we do not promote such applications

because the placebo group is not only valuable for estimating the dose response curve, the

absence of a placebo group can alter the responses in the active dose groups and create

potential reproducibility issues. The third example in Section IV evaluates a study for

compound ID=4009, also identified in the query. It is an extreme case with a binary

endpoint and only two dose groups, both of which appear to be on the plateau of the dose

response curve. The fourth example in Section V evaluates compound ID 1035, which has

two studies with a continuous endpoint where the doses from both studies are on or very

close to the plateau.

Some of the designs, for example the two-dose group design in Section IV, are very poor.

No method of analysis can salvage such a poor design, as it is apparent that it does little

other than characterize the plateau of the dose response curve and place an upper bound

on the ED50. For such limited designs, the Bayesian Emax model with the empirically based

prior distribution for the λ and ED50 achieve the criteria that can be reasonably supported

by the data:

1) it remains numerically stable,

2) it recovers the dose response curve within the observed dosing range,

3) it provides a reasonable prediction of the remainder of the dose response curve based on

historical experience from other compounds, and
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4) it provides an assessment of the uncertainty of the dose response curve estimated within

and outside of the observed dosing range.

Because the dose response curve over its full range is often not well determined for

the reasons noted, the parameters in the model that determine the full dose response are

often unstably estimated. In addition, we have not found them to be very helpful when

discussing dose selection. Thus we tend to minimize their role in reporting, viewing them

as an intermediate output. Because the query seems focused on the model parameters, we

include more focus on them in our response here than is our usual practice.

Two other clarifying points. The first is that we will act as if each compound is new,

and we are analyzing its first dose response study, or in the case of compound ID 1035,

its first two dosing studies. This is clearly not the case; it is done here to illustrate future

applications of the modeling. The second is that some of the compounds evaluated here

included other dose response studies, which considerably expanded their studied dosing

ranges. This is one reason some of the dosing designs appear to be so poor.

II Example ID=1021: continuous endpoint with near

linear observed trend

Compound ID=1021 is a subcutaneous injection for the treatment of Homozygous Familial

Hypercholesterolemia. There was a single dose finding study with endpoint LDL-C percent

change from baseline, 5 active doses (dosing range < 10), and a placebo group.

For our numerical illustration, the prior distribution was constructed using the default

predictive prior distribution for the ED50 and λ. The P50, inferred from the dosing design

(this is an external study), is P50 = 10.715. The prior distributions for the placebo response

and drug effect are centered at 0.0, with diffuse scale parameters set to 10 times the reported

within-group SD for the endpoint. The prior construction here follows the recommendations

in Section 3.1.2 of the submission document.

The sample means and fitted model are graphically summarized in Figure R.1. The

fitted curve displays slight curvature within the observed dosing range, but it is not appre-

ciably different from a linear fit. The prior distribution stabilized the resulting posterior

distribution so the MCMC algorithm performed well even though the data provide little in-

formation about the Emax (and thus ED50) parameter. The MCMC traceplot after burn-in

is displayed in Figure R.2. The convergence and mixing of the chains is good, even though

the log(ED50) distribution is right skewed. The autocorrelation plot in Figure R.3 shows
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that good quality near-independent chains were achieved. This assessment was further

supported by the Gelman-Rubin convergence statistics.

−150

−100

−50

0

0 20 40 60
Dose

P
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F
B

 L
D

L−
C

Figure R.1: Dose response curve for compound ID=1021. The red asterisk are observed dose
group proportions. The solid curve is the posterior median estimator of response computed
over a grid of doses. The solid bars are 90% posterior intervals for the population values,
and the gray bars are 90% prediction intervals.
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difTarget e0[1]

loglambda led50
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Figure R.2: Traceplot based on 3 chains from the MCMC fit for compound ID=1021. The
burn-in was 1000 iterations, and a thinning gap of 5 was used to ensure low auto-correlation.
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Figure R.3: Auto-correlations from the MCMC generated parameters for compound
ID=1021. The burn-in was 1000 iterations, and a thinning gap of 5 was used to ensure low
auto-correlation.
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A summary of the posterior distribution for the model parameters is in Table R.1. The

most notable features are the very high upper bound for the ED50, and the corresponding

lower bound for the Emax parameter. The Emax parameter is derived from the other model

parameters, and note that the measured drug effect here is negative. The extreme skewness

occurs because when λ is near one, a linear trend in the observed dosing range is achieved

by increasing the ED50 and Emax while fixing the ratio Emax/ED50, which is the slope of

the line. The data supply information about the lower bound for the ED50 and the upper

bound for the Emax, but the upper bound for the ED50 and lower bound for the Emax are

set largely by the prior distribution, and they are thus somewhat arbitrary. Note that the

difTarget parameter estimation is not appreciably impacted by this indeterminacy.

Parameter Post Median 90% Post Interval
λ 1.16 (0.77,1.95)

ED50 81.9 (24.8, 1182.7)
difTarget -138.32 (-167.39,-108.99)

Emax -349.02 (-2955.39,-158.61)
E0 6.07 (-13.54,26.71)
σ 43.95 (37.44,53.15)

Table R.1: Parameter estimation for compound ID=1021.

The operating characteristics of the Bayesian Emax modeling in conditions like those

for compound ID=1021 were evaluated in two simulation studies (1000 replications per

setting) implemented using the emaxsimB function in R package clinDR. The same prior

distribution and dosing design are utilized. The simulation population parameters were

selected to produce simulated data similar to that observed in Figure R.1.

The simulation population parameters are given in Table R.2. For the first simulation,

the ED50 was set to approximately 2 times the highest dose, and 10 times the P50. The

difTarget was set to match the observed effect at the highest dose, rather than no effect

(with diffuse scale) as assumed in the prior distribution. The other parameters closely

match those assumed in the prior distribution. The simulation results for the the model

parameters are summarized in the left portion of Table R.2. The ED50 was shrunk back

toward the P50 though it remained high, and the magnitude of the Emax parameter was

correspondingly reduced. The central tendency of the other parameters remained focused

on the popoulation/prior values. The repeated-sampling coverage of the 90% posterior

intervals was ≥ 90%.

The second simulation setting was designed to be more extreme. The ED50 is 5 times

the highest dose and approximately 25 times the initial projected P50. The other sim-
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ulation population parameters were also changed to differ from the corresponding prior

expectations. Under these conditions the model fitting strongly shrinks the ED50 toward

the P50, and likewise for the offsetting Emax posterior distribution. The other parameters

are not appreciably impacted. The posterior intervals continue to include the population

values at the nominal 90% levels. If the ED50 is set to even higher values, the coverage of

the posterior intervals for the ED50 and Emax parameters will drop below 90%. This is not

practically damaging in this setting, however, because the fitted models will still predict

large improvements if dosing at higher levels is feasible.

Prior Quality Good Prior Quality Poor
Parameter Mean Cov Mean Cov

Pop (Post Median) (90% Int) Pop (Post Median) (90% Int)
λ 1 1.05 0.99 0.9 1.05 0.98

log(ED50) 4.74 4.06 1 5.65 4.1 0.98
difTarget -137.1 -135 0.9 -137.1 -133.82 0.89

Emax -411.3 -302.14 1 -720.69 -307.31 0.87
E0 0 3.09 0.91 1 3.76 0.92
σ 44.36 44.99 0.9 44.36 45.01 0.9

Table R.2: Simulations for ID=1021. The columns are the means over 1000 simulation
replications of the posterior median estimators, and the proportions of the 1000 90% pos-
terior intervals that include the population values. The prior distribution was constructed
with the log(P50) = 2.37, a placebo prior mean of 0.0, a treatment effect mean of 0.0,
diffuse scale parameters equal to 10 times the pooled SD for compound ID=1021, and the
meta-analytic default prior distribution for the remaining parameters.

The performance of the modeling for the primary task of estimating dose response within

the observed dosing range was excellent under both simulation conditions. A subset of the

routinely reported simulation results for the model-based effect estimates at each observed

dose are in Figures R.4 and R.5. The repeated-sampling coverage of the Bayesian intervals

achieves or exceeds the nominal levels. Note the large improvements in the estimation

compared to paired comparisons. The very large improvement for the lowest dose is typical,

and occurs because it is closest to placebo. Comparison of the two highest doses also has

a similar small mean square error (not shown), which can be very useful when deciding

whether to increase the recommended dose. In summary, the Bayesian Emax modeling

achieved the four objectives for it given in Section I.
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Coverage probabilities for nominal 0.9 intervals [Dose -PBO]:

Bayesian Dose response modeling posterior intervals:

7.14 14.29 28.57 42.86 57.14

0.921 0.890 0.903 0.914 0.897

.

.

.

Square Root Mean Squared Error [Dose -PBO]:

Bayesian dose response modeling (EST=posterior median) :

7.14 14.29 28.57 42.86 57.14

12.829 16.550 16.824 16.091 18.037

Pairwise comparisons:

7.14 14.29 28.57 42.86 57.14

20.660 21.149 21.037 21.149 21.427

Figure R.4: Summary of the simulation evaluation for compound ID=1021 in the setting
with the prior distribution in closer agreement with the population value.

Coverage probabilities for nominal 0.9 intervals [Dose -PBO]:

Bayesian Dose response modeling posterior intervals:

7.14 14.29 28.57 42.86 57.14

0.938 0.908 0.904 0.910 0.891

.

.

.

Square Root Mean Squared Error [Dose -PBO]:

Bayesian dose response modeling (EST=posterior median) :

7.14 14.29 28.57 42.86 57.14

12.823 16.194 16.655 16.231 18.473

Pairwise comparisons:

7.14 14.29 28.57 42.86 57.14

20.660 21.149 21.037 21.149 21.427

Figure R.5: Summary of the simulation evaluation for compound ID=1021 in the setting
with the prior distribution far from the population values.
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III Example ID=1046: continuous data with near lin-

ear trend, no placebo group

Compound ID 1046 (requested) is a small molecule for cardio-vascular prevention with

primary endpoint change from baseline in Activated Partial Thromboplastin Time (APPT).

There are only 3 doses covering a 6 fold range, and as noted in Section I, there is no placebo

group. The dose response data and the fitted curve are graphically summarized in Figure

R.6. This is another example where the dose response appears near linear in the observed

dosing range.

The prior distribution used for the curve fit in Figure R.6 uses the empirically con-

structed prior for the ED50 and λ with the recommended default values, and the P50 = 200.

The placebo and effect parameter priors are centered at 0.0 with diffuse scale parameters

set to 10 times the reported within-group SD. The diffuse prior distribution for the residual

SD parameter is uniform on (0.1, 100).

The traceplot of the MCMC output is in Figure R.7. The distributions of the E0 and

difTarget parameters are noticeably skewed and there is a trade off occurring between these

parameters. Recall that difTarget is the difference between the high dose and placebo,

so the indeterminacy in placebo has created a second issue distinct from the failure to

observe the plateau of the response curve. Figure R.8 shows some auto-correlation even

after thinning, which also suggests the posterior distribution is ill-behaved and the use of

the MCMC for this distribution is borderline. Note that curve displayed in Figure R.6

is minimally impacted because it is predicting absolute response, not the difference with

placebo. Likewise, differences between doses within the studied range are little impacted

by the lack of placebo data.
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Figure R.6: Dose response curve for compound ID=1046, with diffuse prior distribution
for the placebo response. The red asterisk are observed dose group proportions. The solid
curve is the posterior median estimator of response computed over a grid of doses. The
solid bars are 90% posterior intervals for the population values, and the gray bars are 90%
prediction intervals.
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Figure R.7: Traceplot based on 3 chains from the MCMC fit of the Emax model with a
diffuse prior distribution for the placebo response. The burn-in was 1000 iterations, and a
thinning gap of 5 was used to ensure low auto-correlation.
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Figure R.8: Auto-correlations from the MCMC generated parameters of the Emax model
with a diffuse prior distribution for the placebo response. The burn-in was 1000 iterations,
and a thinning gap of 5 was used to ensure low auto-correlation.
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If a trial is planned without placebo (not recommended), it is important to have some

external information regarding placebo response. A second prior distribution was evaluated

changing to a weakly informative prior distribution for the placebo response with a scale

parameter of one SD. The resulting dose response plot is indistinguishable from Figure R.6,

so it is not displayed. The resulting traceplot (Figure R.9) and auto-correlation plot (Figure

R.10) demonstrate that even a weak prior distribution for the placebo response largely

eliminates the indeterminacy and the borderline performance of the MCMC evaluation.
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Figure R.9: Traceplot based on 3 chains from the MCMC fit of the Emax model with
a weakly informative prior distribution for the placebo response. The burn-in was 1000
iterations, and a thinning gap of 5 was used to ensure low auto-correlation.
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Figure R.10: Auto-correlations from the MCMC generated parameters of the Emax model
with a weakly informative prior distribution for the placebo response. The burn-in was
1000 iterations, and a thinning gap of 5 was used to ensure low auto-correlation.

A summary of the posterior distribution of the model parameters is in Table R.3, with

the results for the diffuse placebo prior on the left and the results for the weakly informative

on right. The impact of the linear trend on the ED50 is similar to that for compound ID

1021 in Section II, so it is not discussed here. The impact of the lack of placebo data is

now visible in the upper bound for the effect parameter difTarget, and the lower bound

for the placebo response parameter, E0. Comparing the results for the diffuse and weakly

informative placebo priors shows that these bounds are largely determined by the placebo

response prior. This is unsurprising. If you intend to estimate differences with placebo, you

need to include placebo in the trial or be prepared to supply external information about

placebo response. The problem with the latter approach is that the absence of placebo in

the trial may alter the response to the active doses.
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Diffuse Prior for E0 Weakly Informative Prior for E0

Parameter Post Median 90% Post Interval Post Median 90% Post Interval
λ 0.9 (0.39,1.74) 0.97 (0.53,1.77)

ED50 1170 (212.4, 24321.9) 1297.9 (294.6, 25505.5)
difTarget 26.79 (18.21,56.02) 25.32 (17.96,38.85)

Emax 84.07 (36.32,503.53) 81.65 (35.35,659.96)
E0 -2.48 (-32.4,6.07) -0.92 (-14.81,6.18)
σ 14.08 (13.06,15.24) 14.07 (13.06,15.21)

Table R.3: Parameter estimation for compound ID=1046.

IV Example ID=4009: binary endpoint near plateau

only

The compound ID=4009 was studied in four qualifying protocols. The protocol referenced

in the query, R688-AD-1224, is not appropriate as an example of a standalone protocol

because it has only two doses and no placebo group. This is not a reasonable application

for any type of dose response modeling, and such applications were excluded from the

proposed use cases in Section 1 of the submission document. We utilize protocol R668-AD-

1334 instead, which is itself an extreme case with a binary endpoint and only two doses and

placebo, Another similar situation is the suggested use of study 1008-009 from compound

ID 1017. This study has a single dose and placebo, which is not a valid use case when

viewed as a stand-alone study. Dosing for compound ID 1017 was evaluated in 3 protocols

that provide a moderate amount of dose response information, so it is not included in our

response as an example with a poorly determined dose response.

The dose groups for study R668-AD-1334 of compound ID=4009 are 0, 150 and 300 mg

with sample sizes of 224, 224 and 223. The two active doses appears to be on or near the

plateau of the dose response, as displayed in Figure R.11. The endpoint is an investigator

assessed global improvement responder variable for Dermatitis. The data and fitted model

are graphically summarized in Figure R.11.

The prior distribution for the curve fit in Figure R.11 uses the empirically constructed

prior for the ED50 and λ with the recommended default values, and the P50 = 25. The

prior distribution for the placebo response is centered at logit(0.1), and effect parameter

prior is centered at 0.0; both have diffuse scale parameters set to 4 on the logit scale.

The MCMC diagnostics in Figures R.12 and R.13 support the use of the method in this

setting.
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Figure R.11: Dose response curve for compound ID=4009. The red asterisk are observed
dose group proportions. The solid curve is the posterior median estimator of response
computed over a grid of doses. The solid bars are 90% posterior intervals for the population
values, and the gray bars are 90% prediction intervals.
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Figure R.12: Traceplot based on 3 chains from the MCMC fit for compound ID=4009. The
burn-in was 1000 iterations, and a thinning gap of 5 was used to ensure low auto-correlation.
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Figure R.13: Auto-correlations from the MCMC generated parameters for compound
ID=4009. The burn-in was 1000 iterations, and a thinning gap of 5 was used to ensure low
auto-correlation.

The posterior distribution for the model parameters are summarized in Table R.4. Two

features to note are 1) the wide interval for the ED50, which is nonetheless bounded by

the lowest studied dose, and 2) the much closer agreement between the difTarget and Emax

parameters due to the fact that the data supply much information about the plateau.

Parameter Post Median 90% Post Interval
λ 1.11 (0.45,2.64)

ED50 11.4 (0.4, 99.7)
difTarget 1.69 (1.29,2.11)

Emax 1.8 (1.34,2.75)
E0 -2.16 (-2.54,-1.81)

Table R.4: Parameter estimation for compound ID=4009.

Simulation studies similar to those in Section II were conducted to evaluate the op-

erating characteristics of the modeling when there are only two dose groups, with both

apparently on the plateau of the dose response curve. The λ and ED50 simulation popula-

tion parameters in the first simulation match the central tendencies of the prior distribution.

The E0 and difTarget were selected to match the sample rates from the real data. The

results are summarized in the left side of Table R.5. The operating characteristics are
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very good with repeated-sampling coverage of the posterior intervals for the ED50 and λ

parameters exceeding the nominal 90% level because the population and prior values were

in close agreement and the data have little information about these parameters.

The second simulation created a steeper dose response with a much lower ED50 (the

population values are in Table R.5). The model now substantially over-estimates the ED50

because the data have very little information about the parameter to update the prior

distribution for it. The posterior intervals for the ED50 and λ still have high coverage and

appropriately warn of very large uncertainty about the lowest effective doses.

The performance of the method within the observed dosing range was good in both

simulation settings, as summarized in Figures R.14 and R.15. In summary, the method

achieved the four objectives given in Section I.

Prior Quality Good Prior Quality Poor
Parameter Mean Cov Mean Cov

Pop (Post Median) (90% Int) Pop (Post Median) (90% Int)
λ 1 1.01 1 1.5 1.07 1

log(ED50) 3.22 3.03 1 0.92 2.68 0.98
difTarget 1.67 1.68 0.91 1.67 1.74 0.9

Emax 1.8 1.92 0.96 1.67 1.91 0.89
E0 -2.2 -2.22 0.9 -2.75 -2.78 0.91

Table R.5: Simulations for ID=4009. The columns are the means over 1000 simulation repli-
cations of the posterior median estimators, and the proportions of the 1000 90% posterior
intervals that include the population values. The prior distribution was constructed with
the P50 = 25, a placebo prior mean of logit(0.10), a treatment effect mean of 0.0, diffuse
scale parameters on the logit scale (4.0), and the meta-analytic default prior distribution
for the remaining parameters.
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Coverage probabilities for nominal 0.9 intervals [Dose -PBO]:

Bayesian Dose response modeling posterior intervals:

150 300

0.930 0.918

.

.

.

Square Root Mean Squared Error [Dose -PBO]:

Bayesian dose response modeling (EST=posterior median) :

150 300

0.030 0.032

Pairwise comparisons:

150 300

0.037 0.037

Figure R.14: Summary of the simulation evaluation for compound ID=4009 in the setting
with the prior distribution in closer agreement with the population value.

Coverage probabilities for nominal 0.9 intervals [Dose -PBO]:

Bayesian Dose response modeling posterior intervals:

150 300

0.882 0.904

.

.

.

Square Root Mean Squared Error [Dose -PBO]:

Bayesian dose response modeling (EST=posterior median) :

150 300

0.028 0.028

Pairwise comparisons:

150 300

0.033 0.033

Figure R.15: Summary of the simulation evaluation for compound ID=4009 in the setting
with the prior distribution far from the population values.
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V Example ID=1035: continuous endpoint near plateau

in two studies

Compound ID=1035 is an inhaled small molecule for the treatment of COPD with change

from baseline in FEV1 as the endpoint. There were two studies providing limited dosing

information. This example differs from the others included in our response because it

includes two studies, and there is some indication that the lowest tested dose is below the

plateau although the doses included in the studies clearly do not characterize most of the

dose response curve well.

For our numerical illustration, the prior distribution was constructed using the default

predictive prior distribution for the ED50 and λ. The P50, inferred from the dosing design

(this is an external study), is P50 = 225. The prior distribution for the placebo response

is centered at 1.2, and the prior distribution for the drug effect is centered at 0.0, with

diffuse scale parameters set to 10 times the reported within-group SD for the endpoint.

The prior construction here follows the recommendations in Section 3.1.2 of the submission

document. A separate independent placebo response parameter, E0, was fit for each study.

The sample means and fitted model are graphically summarized in Figure R.16. Visual

examination and the fitted curve suggests a an increase in response for doses between 150

and 300 mg, but this is not certain. The placebo response in the second study appears

to have increased, which is not uncommon, but the same curve after placebo adjustment

describes the data well.

The usual diagnostics for the MCMC evaluation of the posterior distribution, such as

the traceplot (Figure R.17) and auto-correlation plot (Figure R.18) support its use. The

traceplot does reveal the very heavy tail of the posterior distributions for the ED50 and λ

parameters.
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CQAB149B2212 CQAB149B2334
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Figure R.16: Dose response curve for compound ID=1035. The red asterisk are observed
dose group proportions. The solid curve is the posterior median estimator of response
computed over a grid of doses. The solid bars are 90% posterior intervals for the population
values, and the gray bars are 90% prediction intervals.
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Figure R.17: Traceplot based on 3 chains from the MCMC fit for compound ID=1035. The
burn-in was 1000 iterations, and a thinning gap of 5 was used to ensure low auto-correlation.
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Figure R.18: Auto-correlations from the MCMC generated parameters for compound
ID=1035. The burn-in was 1000 iterations, and a thinning gap of 5 was used to ensure low
auto-correlation.

A summary of the posterior distribution for the model parameters is in Table R.6. The

high uncertainty in the estimation of the λ and ED50 parameters is unsurprising given the

lack of data on the steeper portion of the dose response curve. The upper tails of the ED50

and Emax quantitatively reveal something less apparent from simple visual inspection of

the sample means, which is the possibility that additional efficacy might be possible if it

feasible to test a higher dose. The modeling also makes the consistency of the results from

the two studies more apparent than visual inspection of the sample means alone. As in the

other examples, the modeling utilizes the limited information available effectively, but it is

not a substitute for better dose response designs.

Parameter Post Median 90% Post Interval
λ 1.17 (0.35,2.96)

ED50 46.4 (2.3, 692.4)
difTarget 0.17 (0.15,0.2)

Emax 0.19 (0.15,0.36)
E01 1.28 (1.25,1.31)
E02 1.31 (1.29,1.33)
σ 0.23 (0.22,0.24)

Table R.6: Parameter estimation for compound ID=1035.
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I Overview

We begin by responding to the final paragraph of Question 2 because once the construction

of the prior distribution is understood, the remainder of the procedure and requested exam-

ple apply routine Bayesian statistical methods. References to sections from the submission

document are noted by including (SDOC) in the reference. The strategy for developing

the prior distribution for the Emax model is described in Section II.1. The details of this

strategy are then reviewed in Sections II.2-II.6. A detailed example involving two protocols

is reviewed in Section III.

II Constructing an empirically-based prior distribu-

tion

II.1 Meta-analytical predictive (MAP) prior

The strategy we use to construct the prior distribution has been called the meta-analytical

predictive (MAP) prior by Schmidli et al. (2014). Using notation similar to theirs, we have

historical dose response data, Yh, h = 1, . . . , H for H compounds assumed to follow Emax

models. The variation in the model parameters from different compounds are described by

a hierarchical distribution. The dose response parameters display central tendencies (af-

ter appropriate transformation and normalization) summarized in a distribution called the

posterior predictive distribution for a future compound. The posterior predictive distribu-

tion is derived from the hierarchical distribution, but it is not the same as the hierarchical

distribution as will be explained. When data for the new compound, denoted by Y∗, are

available, it can be added to the historical data and the hierarchical model fit can be

updated to yield a Bayesian posterior distribution for all of the historical and new param-

eters. This approach is called meta-analytical combined (MAC). It is a cumbersome and

computationally intensive approach. When interest in focused on the parameters for the

new compound, the posterior distribution for the new parameters can be computed using

the predictive distribution based on the historical data as the ’prior’ distribution, and it is

combined with the usual likelihood function for the new data only. This approach is called

meta-analytical predictive (MAP). Due to the properties of Bayesian updating, the MAC

and MAP approaches yield the same correct posterior distribution for the new parameters

conditional on both the historical and new data.

There are two distinctive features of the MAP approach we apply. The first is that the

predictive distribution is computed for only two of the Emax model parameters: the ED50
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and λ (with appropriate transformation and norming). Hierarchical models and resulting

predictive distributions were not applied to the placebo response and Emax parameters.

The reasons for this difference in the handling of parameters is reviewed in Section II.6.

The prior distributions for the placebo and effect parameters are usually assigned diffuse

distributions when applied to a new compound. This completes the full specification of the

prior distribution for a new dose response study. The creation of the prior is reviewed in

Section II.6. We have noted that our software can accommodate an informative distribution

for the placebo parameter(s) that might be derived from historical placebo data. There are

many issues with the use of historical placebo data, but they are not specific to the dose

response setting, so we have not included this potential use in our submission.

The second distinctive feature of our MAP implementation is that we approximated the

posterior predictive distribution by a bivariate t−distribution. The predictive distribution

does not have a closed analytical form, but we can generate a nearly unlimited sample from

it using the MCMC (Markov Chain Monte Carlo) output from the modeling of the historical

data. This approximation is reviewed in Section II.5. With this approximation, the Emax

modeling of dose response for a new compound becomes a routine Bayesian application.

Note in particular, using the MAP approach, there are NO ’hyper’ parameters involved in

the Bayesian modeling of dose response for a new compound.

The hierarchical distribution for the parameters, which is conditional on unknown

hyper-parameters, also has an assumed bivariate t − distribution. Its relationship to the

predictive distribution is reviewed in Section II.5. Finally, the diffuse prior distributions

for the placebo and effect parameters are also specified in the form of t−distributions. The

three distinctly different uses of the t− distribution may be a source of confusion.

II.2 Emax model and its parameterization

The Emax models for continuous and binary data are introduced in equations (1.1) and

(1.2) of the introductory section 1.3.1(SDOC). The description is standard, but two trans-

formations specific to our application are introduced. The first is the use of a ’known’

projected (predicted) ED50 value denoted by the P50. In most subsequent computations,

the ED50 is transformed by log(ED50/P50). The interpretation of the ED50/P50 as a mea-

sure of the precision of our projected ED50 at the time of planning the first phase 2 study

is introduced. The second transformation replaces the Emax parameter representing the

maximal compound effect at an infinite dose with difTarget, the effect of the compound at

a pre-specified dose, dTarget. The dTarget is typically set to the highest observed dose. We

found clinical teams understood difTarget at the highest dose better than Emax, and MCMC
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algorithms tend to converge better using it because it is directly estimable using data from

the highest dose. Note that difTarget and dTarget generalize the Emax parameter; setting

dTarget to a high dose, e.g., 20 times the highest observed dose, makes difTarget and Emax

equivalent for any users with a strong preference for the Emax parameterization.

II.3 Hierarchical Emax model for historical data

Section 2.1(SDOC) describes the historical dose response data collection and organization.

As there have not been any queries regarding this section, we will not review it here.

The Emax models for the numerous historical compounds re-use the notation reviewed

in Section II.2. The only generalization is the addition of subscripts denoting the different

compounds. For the placebo response parameter (E0), there is a second subscript indicating

the study for compounds that have data from more than one study. Sections 1.3.1(SDOC)

and 2.2.1(SDOC) discuss the need for potentially different placebo response even when

studies have similar designs. The equality of the other parameters across protocols for the

same compound is a topic of the meta-analysis and best viewed in the plots of the model

fits in Appendix C(SDOC).

The full model involves the specification of the likelihood for the data, specification

of a hierarchical model, specification of a prior distribution for the ’hyper’ parameters of

the hierarchical model, and specification of prior distributions for the placebo and effect

parameters whose between-compound variation was not modeled. These specifications are

reviewed in the next four sub-sections.

II.3.1 Likelihood function for the dose response data

The proposed methods to analyze dose response data from a new compound are ordinarily

applied to patient-level data, although they can accommodate aggregated data, which is

necessary in some circumstances. It was not possible to collect patient-level data from the

historical dose response studies, so the meta-analysis of approximately 200 past compounds

to create a prior distribution for future compounds was conducted on aggregated data. As

will be noted, this is not a major limitation for our primary objective. The meta-data has

the form ȳijk, SEijk, dijk, nijk, SSYjk, and dfjk, where i, j, k index dose, compound, and

study (details are in Section 2.1(SDOC)). The ȳijk are sample means or proportions (binary

outcomes), the SEijk are the usual (i.e., within dose group) standard errors of the ȳijk, the

dijk are the doses, the nijk are the dose/compound/study sample sizes, and for continuous

endpoints, SSYj and dfj are the pooled within-group sum of squares and degrees of freedom

summed across all dose groups from all studies for compound j. For the Emax models of
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continuous and binary outcomes in Section 2.2.1(SDOC), the aggregated data contain the

sufficient statistics needed to compute the full likelihood.

For continuous outcomes, the ȳijk enter the likelihood as:

P
(
ȳijk | dijk, λj,ED50j, difTargetj,E0jk

)
∼ N (ȳijk; Eijk, SEijk) , (R.1)

where Eijk is

E0jk +
Emaxjd

λj
ijk

ED
λj
50j + d

λj
ijk

, (R.2)

and the Emaxj are derived from difTargetj and the other parameters. The SSYj for com-

pound j enters the likelihood as the usual scaled chi square represented by a gamma

distribution:

P (SSYj | σj) ∼ Γ(SSYj; shape = dfj/2, rate = 1/(2σ2
j )) . (R.3)

For binary data, the proportions are transformed to logit(ȳijk), and the SEijk are ad-

justed accordingly. The normal approximation is then applied to the transformed binomial

variate, so the contribution to the likelihood has the same form as (R.1), with the logit

transformation applied to Eijk in (R.2). Note that while the normal approximation to the

transformed rates is used for meta-analysis of the historical data, the binomial likelihood

is used when evaluating new compounds with binary endpoints.

The ȳijk and SSYj from all of the dose/compound/study groups are independent condi-

tional on the parameters, so the terms of the form (R.1) and (R.3) combine multiplicatively

in the likelihood. Using boldface notation to represent the large collections of terms, the

contributions from all of the ȳijk and SSYj are denoted:

P (ȳ | d,λ,ED50,difTarget,E0,σ) , (R.4)

P (SSY | σ) . (R.5)

II.3.2 Hierarchical model

The hierarchical model representing the variation in (log(λj), log(ED50j/P50j)) is a bivariate

distribution that is specified conditional on the P50j, and some hyper-parameters, which

must be estimated. A heavy-tailed t5 distribution is specified, and the hyper-parameters

are its means, scales, and potential correlation given by (µλ, µED50
, σλ, σED50

, ρ12). The

model is fully specified (p. 13, Section 2.1.1(SDOC)):

P
(

log(λj), log(ED50j/P50j) | P50j, µλ, µED50
, σλ, σED50

, ρ12

)
∼

t5

(
log(λj), log(ED50j/P50j); µλ, µED50

, σλ, σED50
, ρ12

)
. (R.6)
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An equivalent form of (R.6) that more clearly represents the conditioning on the P50j is

P
(

log(λj), log(ED50j) | P50j, µλ, µED50
, σλ, σED50

, ρ12

)
∼

t5

(
log(λj), log(ED50j); µλ, µED50

+ log(P50j), σλ, σED50
, ρ12

)
. (R.7)

The posterior distribution includes an independent multiplicative term of the form (R.7)

conditional on the hyper-parameters and the P50j for each compound. This product is

denoted symbolically by:

P
(

log(λ), log(ED50) | P50, µλ, µED50
, σλ, σED50

, ρ12

)
. (R.8)

II.3.3 Prior distribution for the hyper-parameters

The prior distributions for the means, scales, and correlation follow common practice for

these parameters. A detailed description fully specifying these prior distributions is in

Appendix A(SDOC). As there have not been any queries about the prior distributions of

the hyper-parameters from this section, we will not review it here. One topic of note is

that we performed sensitivity analyses to this prior specification. Results for 8 different

combinations of the hyper-priors are reported. The results are reviewed in Section II.5 along

with their role in constructing the predictive distribution used as the prior distribution for

future compounds. To shorten the representation of the full posterior distribution of all of

the parameters, the set of hyper-parameters are denoted by η = (µλ, µED50
, σλ, σED50

, ρ12),

and their joint distribution by P (η).

II.3.4 Prior distribution for the placebo and effect parameters

This topic is covered in the bottom half of p. 63, Appendix A(SDOC). There have been

multiple queries related to it, so we will describe it with additional explanation here.

We begin with prior distributions for placebo response. The intent is to specify diffuse

but numerically reasonable prior distributions for the placebo response. The scales of the

endpoint for different compounds vary widely, so different diffuse scaling is required for

each compound. With two hundred compounds and even more protocols, this is very

cumbersome to input and validate in standard Bayesian analysis software. A simple device

from mathematical statistics can easily avoid this problem. We apply linear re-scaling to

the data to create standardized scales across compounds. Note that re-scaling the data

does not change the ED50 or λ parameters, and the placebo and effect parameters are just

linearly transformed and the MCMC-simulated values for these parameters can be simply

back-transformed in a fully invariant manner. The likelihoods in equations (R.1) and (R.3)

are applied with the transformed ȳijk and SSYj.
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Two standardizations are applied. First, for binary endpoints, following Chinn (2000),

the logit response rates are divided by π/
√

3, yielding differences that can be interpreted as

effects sizes for a continuous endpoint. Comparison of the placebo-adjusted effects at the

highest doses for compounds with binary and continuous endpoints confirmed the success

of the recommended re-scaling. Second, the mean of the endpoint for each compound was

subtracted, and the centered endpoint was then divided by its SD. For binary endpoints,

the scaling by the SD is omitted. The mean and SD were computed without regard to dose

group or protocol, resulting in endpoints with mean differences between treatment groups

somewhat smaller than the standard effect sizes often reported. The same independent

identically distributed diffuse normal distribution is then applied to the mean of each

placebo response:

P (E0jk) ∼ N (E0jk; 0, SD = 3) . (R.9)

The independent product of each term in (R.9) is represented by P (E0).

The prior distributions for the difTargetj are constructed similarly, but the sampling

of compounds with demonstrated efficacy in the meta-data requires an adjustment to

commonly-applied prior distributions. First, the linear transformations applied to the data

were also constructed to reverse the effect of compounds that had a negative effects, so all

compounds have a positive effect enabling a single prior distribution. While a diffuse dis-

tribution for the standardized effects is used, there can still be a prior/data conflict when

the prior distribution is centered at 0.0 because all of the compounds in the meta-data

have demonstrated effect. After standardization, the placebo-adjusted sample mean at the

highest dose from each compound has an observed mean of 0.85 and sample SD of 0.63.

The prior distribution for the mean treatment effect was assigned a log t5 distribution with

its median set to 0.85, and a scale parameter (1.0) yielding a prior SD for the effect > 10

times the observed sample SD. The log transform was used to ensure an effect and reflect

the skewed distribution of observed effects at the highest dose across compounds yielding

independent identically distributed prior distributions:

P
(
log(difTargetj)

)
∼ t
(
log(difTargetj); log(0.85), scale = 1.0

)
. (R.10)

The independent multiplicative product of terms in (R.10) from each compound are denoted

by P (log(difTarget)). The prior sensitivity assessments noted in Section II.3 included a

lower and higher prior scale for the effect parameters in (R.10).

Finally, for continuous endpoints, the within-dose group SDs (standard deviation after

normalization) were assigned a diffuse uniform distribution:

σj ∼ U(σj; 0.01, 10) , (R.11)
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and the independent multiplicative product of the contributions in (R.11) from compounds

with continuous endpoints is denoted by P (σ).

NOTE: The data standardization and resulting prior specifications for placebo response and

compound effects applied in the meta-data modeling are NOT applied to modeling of future

compounds. The large scale (approximately 200 compounds) and special nature of the

meta-data collection necessitated these adjustments. They are unneeded and inappropriate

for the modeling of a future compound. Note also that the resulting posterior distributions

for the placebo and effect size parameters included in the meta-data model play no direct

role in subsequent applications.

II.4 Fitting the model for the meta-data

The posterior distribution is evaluated using MCMC methods. The essential output of

the model fit are the 10, 000 draws from the posterior distribution of the hyper-parameters

η=(µλ, µED50
, σλ, σED50

, ρ12). The MCMC-generated hyper-parameters are the only out-

put of the modeling that is subsequently used when computing the predictive distribution

for future compounds. The remaining parameters are specific to the historical compounds,

so they are of limited interest. They are used primarily for assessing the adequacy of the

modeling of the meta-data. For example, the MCMC output of most of the parameters were

used to compute the dose response curves fit to the historical data displayed in Appendix

C(SDOC).

The full posterior distribution is constructed multiplicatively following the usual se-

quence of conditional distributions. The sample sizes are assumed ancillary and all of the

probabilities condition on them. The degrees of freedom are a function of sample size,

so their conditioning is also omitted in the derivation. From Bayes theorem, the posterior

distribution of the parameters P (log(λ), log(ED50),η,difTarget,E0,σ | ȳ,SSY ,d,P50)

is proportional to

P (ȳ,SSY ,d,P50 | log(λ), log(ED50),η,difTarget,E0,σ)×

P (log(λ), log(ED50),η,difTarget,E0,σ) .
(R.12)

Conditioning on the ancillary data, d and P50, note that ȳ and SSY depend on a subset

of the parameters (equations (R.4, R.5)). They are also independent of each other and the

P50 when the Emax model parameters are known, so (R.12) is equal to

P (ȳ | d, log(λ), log(ED50),difTarget,E0,σ)P (SSY | σ)×

P (d,P50 | log(λ), log(ED50),η,difTarget,E0,σ)×

P (log(λ), log(ED50),η,difTarget,E0,σ) .

(R.13)
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Applying Bayes theorem, the middle probability in equation (R.13) becomes

P (log(λ), log(ED50) | d,P50,η,difTarget,E0,σ)P (d,P50 | η,difTarget,E0,σ)

P (log(λ), log(ED50) | η,difTarget,E0,σ)
.

(R.14)

The hierarchical model specifies that log(λ) and log(ED50) are independent of all of the

conditioning terms in the left probability in the numerator of equation (R.14) except for P50

and η, so this terms reduces to the hierarchical model (R.8) in section II.3.2: P
(

log(λ),

log(ED50) | P50,η
)
. The right probability in the numerator can be discarded because

the usual ancillary assumption regarding the d and P50 ensures this probability does not

depend on the parameters (recall that η are the parameters of the conditional distribution

of (log(λ), log(ED50) given d and P50). The final probability in (R.13) factors as

P (log(λ), log(ED50) | η,difTarget,E0,σ)P (η,difTarget,E0,σ) . (R.15)

The denominator of (R.14) cancels the first term in (R.15). Noting that (η,difTarget,E0,σ)

are a priori independent yields the standard form for a hierarchical model:

P (ȳ | d, log(λ), log(ED50),difTarget,E0,σ)P (SSY | σ)×

P (log(λ), log(ED50) | P50,η)×

P (η)P (difTarget)P (E0)P (σ) .

(R.16)

Each probability in (R.16) is supplied in Sections II.3.1-II.3.4. Some of the hierarchical mod-

els included correlations between (log(λ), log(ED50)) and difTarget. The same derivation

applies for this expanded model. The change required is to include the three terms together

in the hierarchical model, and remove the P (difTarget) from the non-hierarchical priors

in the last line of (R.16). While the additional correlations are estimated, the prior means

and scale parameters for difTarget are still set to known diffuse values.

II.5 Computing the predictive distribution (MAP) for a future
compound

The values of log(λ) and log(ED50/P50) for a future compound are predicted from their

bivariate hierarchical t5 distributions in (R.6). This model is conditional on the P50

of the future compound, the parameters (µλ, σλ, µED50
, σED50

), and for some models,

ρ12. The MCMC fit produces 10, 000 random draws from the posterior distribution of

(µλ, σλ, µED50
, σED50

), and ρ12. Random samples from the posterior predictive distribution

for a future compound can thus be generated by simulating a single prediction from the con-

ditional t5 hierarchical distribution for each set of randomly generated (µλ, σλ, µED50
, σED50

),
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and ρ12. The randomly generated values of λ and ED50 for a future compound are then

computed by back-transformation. The simulation approach described here is equivalent

to approximating the predictive distribution with P50 = 1, and then adding the log(P50)

from a future compound to this approximation (see equation (R.7)).

With 10, 000 draws, the predictive distribution can be precisely approximated. This is

common Bayesian practice (e.g., Schmidli et al. (2014)) because it then allows standard

Bayesian methods to be applied to future compounds. The predictive distribution is a

mixing of t5 distributions with different means and scales. As the t− distribution is itself

a mixing of normal distributions, it is not surprising that another t − distribution can

yield an adequate approximation to the predictive distribution. Q-Q plots of the 10, 000

draws of each parameter from the final selected predictive distribution (discussed below)

versus the quantiles of the t5 distribution are displayed in Figures R.1 and R.2. Without

even adjusting the degrees of freedom, a t5 − distribution can provide a fit-for-purpose

approximation. Regression of the generated log(λ) on log(ED50/P50) also confirmed the

linear relationship between the variables required by the bivariate t − distribution. The

mean and scale parameters of the approximating t5 distribution were computing by applying

maximum likelihood estimation to the 10, 000 simulated values. The final selected model

fixes the means at zero (to be discussed) so the means were not approximated for this model.

The correlation between the log(λ) and log(ED50/P50) was approximated simply by the

sample correlation. As reported in Appendix A(SDOC), the scale values and correlation

are 0.425, 1.73, and −0.45. The scale parameters approximated by simple method of

moments (scale=
√

(3/5)SD) change inconsequentially to 0.434 and 1.74.

Figures 1 (displaying log(λ)) and 2 (displaying log(ED50/P50)) (Section 2.3(SDOC))

summarize the predictive distributions yielded by the eight different sets of hyper-parameter

distributions. The different hyper-parameter distributions are described in detail in Ap-

pendix A (SDOC). The log(ED50/P50) distributions display little sensitivity to the distri-

bution of the hyper-parameters. The P50 is above the ED50 about as often as it is below

the ED50. The log(λ) predictive distributions vary more with different distributions for the

hyper-parameters. There were three distinct differences: 1) priors that fix the expected

value of log(λ) at zero versus those that estimate the mean, 2) priors that allow for cor-

relation between log(λ) and log(ED50/P50), and 3) priors that set the lower bound for λ

at 0.5. Over limited dosing ranges, the dose response curves from models with λ = 0.75

are nearly indistinguishable from appropriately-matched hyperbolic models with λ = 1, so

this difference is not important for the intended applications of the resulting prior distri-

butions. Because users sometimes force λ = 1 to use the well-known hyperbolic model, we

prefer this centering. The second source of differences is that prior distributions (mod51,
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mod52) that include potential correlation between the parameters yield more dispersed

distributions. Seeking to be conservative in the construction of the predictive model, this

suggested the use of the model with λ centered at the hyperbolic model that includes

correlation (mod52). Finally, the third source of differences were prior distributions that

truncated the lower bound of λ at 0.5 (mod101, mod102). They were included to check for

the possibility that they would favor larger values of λ than the other prior distributions.

This is not the case; the truncated distributions instead resulted in tighter concentration

around the central tendencies of the other models.

From Figures 1 and 2 (SDOC), the selected t5 model (mod52, third from top) includes

the high density region and support produced by the other hyper-priors. The variation

between these predictive distributions is larger than the approximation errors in the t −
distribution. This is another reason why more complex approximating distributions are not

warranted. Also important, subsequent exploration of the sensitivity of estimation of dose

response curves utilizing the different predictive distributions for log(λ) and log(ED50/P50)

display low sensitivity. The sources of sensitivity considered in this section are small when

compared to the much larger deviations explored in Section 3.3 (SDOC).
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Figure R.1: QQ plot of the 10000 draws from the predictive distribution for log(λ) versus
a t5 − distribution.
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Figure R.2: QQ plot of the 10000 draws from the predictive distribution for log(ED50/P50)
versus a t5 − distribution.

II.6 Combining compound-specific information with the predic-
tive prior distribution (MAP) to complete the prior distri-
bution for a new compound

The process of combining compound-specific information with the meta-analytic prior dis-

tribution for the λ and ED50 is described in detail in Sections 3.1.1 and 3.1.2 (SDOC), so

it is not repeated here. Instead, our focus is on two topics related to the construction of

the meta-analytic prior distribution.

The first is just to repeat that the predictive prior distribution for the λ and ED50 for

a new compound under development is approximated by a bivariate t-distribution:

t5 (log(λ), log(ED50/P50); mean = (0, 0), scale = (0.425, 1.73), ρ = −0.45) . (R.17)

The specification of the P50 by the study team is discussed in Section 3.1.1 (SDOC). The

prior distribution for the remaining parameters are specified independently of the λ and

ED50 and usually assigned diffuse distributions.

The second consideration is the sampling of compounds that was feasible for the meta-

data collection. Because of the large number of failed compounds and the lower quality

of documentation for past studies with disappointing results, we were only able to collect

data from compounds that demonstrated effect in phase 2 development, indeed, many of
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the compounds were sampled from lists of approved compounds. Most, but not all future

compounds beginning a dose ranging study, have a positive proof of concept (POC) study.

The POC studies are typically small (single high dose and placebo) and compounds move

forward because of the positive result, so it has been long observed that the results in

the next development stage tend to suffer a ’regression’ effect. The compounds in the

meta-data, which were selected based on successful end of phase 2 data, tend to have large

effect sizes than the compounds beginning dose ranging. Because of this and other technical

challenges, the effect sizes from the meta-data are not incorporated into the formal Bayesian

analysis of future compounds. Instead, the standard practice is to specify a diffuse prior

distribution for the effect size of the new compound conservatively centered at no effect.

An example of the prior construction is in Section III.1.

III Example with two protocols

The example in Section 3.2.1 (SDOC) is based on internal development of a compound.

Patient-level data are available and it has two protocols, so it used here. The compound

is older, but it is treated as if it is a new compound to illustrate the methods. The real

analysis utilized the Bayesian Emax model approach, but its development pre-dated the

collection of the meta-data, so the prior distribution implemented here differs somewhat

from the original analysis. The two dose response protocols were executed sequentially.

Because two protocols were requested, we describe the second analysis when data from

both protocols are available. The first dose response analysis applied to the first protocol

alone was used to guide design of the second protocol. It is described on the first two pages

of Section 3.2.1 (SDOC), and not repeated here.

The two dose response studies were conducted as part of the development of tofacitinib

for the treatment of rheumatoid arthritis (RA). The primary endpoint is the binary respon-

der ACR20. Missing endpoints were treated as failure as was the standard for the ACR20

endpoint at the time. The twice-daily (BID) dosing regimen was studied throughout.

The first study had total daily doses of 0, 10, 30, and 60 with sample sizes of 62, 58, 68,

and 63. A plot with the sample response rates for the ACR20 is in the left panel of Figure

R.3. The red asterisks are the sample responder proportions. The second study had doses

of 0, 2, 6, 10, 20, and 30 with samples sizes of (46, 44, 46, 45, 56, 53). Additional details are

given in the submission document. The sample response rates for the second study are in

the right panel of Figure R.3.
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Figure R.3: Two dose response studies of a treatment for RA with ACR20 responder
endpoint (binary). The red asterisk are observed dose group proportions. The solid curve
is the posterior median estimator of response computed over a grid of doses. The solid
bars are 90% posterior intervals for the population values, and the gray bars are 90%
prediction intervals. The placebo response is allowed to differ in the fitted curves, but the
other parameters in the model are the same across the two studies. The model output is
back-transformed to the response rate scale.

III.1 Specification of the prior distribution

This section follows the description of prior specification in Section 3.2.1(SDOC). The

projected P50 = 10 mg total daily dose, which was derived from pre-clinical data using

clinical pharmacology methods. The P50 was also supported by limited clinical data in

two other indications. This is the only compound-specific input required to specify the

prior bivariate t− distribution for the λ and ED50 using the predictive MAP distribution

(Sections II.5, 2.3 (SDOC)):

t5 (log(λ), log(ED50); mean = (0, log(10)), scale = (0.425, 1.73), ρ = −0.45) . (R.18)

A placebo response rate of 0.15 was predicted from historical data, but there was high

between-study heterogeneity in the historical data, and there was evidence that placebo

response was increasing over time. Diffuse t5 prior distributions for E01 and E02 from the

two studies on the logit scale were thus specified with a prior scale parameter of 4 and

1309
01

77
e1

99
d4

85
d4

\A
pp

ro
ve

d\
A

pp
ro

ve
d 

O
n:

 3
1-

M
ar

-2
02

2 
15

:1
5 

(G
M

T
)



mean of logit(0.15) for the logit-transformed rate:

P (E01,E02) =t5 (E01; mean = logit(0.15), scale = 4)×

t5 (E02; mean = logit(0.15), scale = 4) .
(R.19)

Following the broader guidance in Section 3.1.2 (SDOC), separate independent placebo

responses were estimated from the two studies without any pooling of the placebo response

across them. The placebo responses from the studies are not compared once data are

available to test for possible pooling.

Similarly, the response difference between the highest dose (dTarget = 60 mg) and

placebo was independently specified and centered at no effect on the logit scale with wide

uncertainty in a t5 distribution:

P (difTarget) = t5 (difTarget; mean = 0, scale = 4) . (R.20)

The full prior distribution, denoted P (λ,ED50, difTarget,E01,E02), is the product of the

independent distributions in equations (R.18), (R.19), and (R.20).

III.2 Model fitting

The notation used in Section II is modified for patient-level data from two trials. The yijk

are binary responder endpoints with corresponding doses dijk, where k is now the index

for study (k = 1, 2), j is the index for dose group within study, j = 1, . . . , ndk, where ndk

is the number of dose groups in study k, and i indexes the njk patients in dose group j in

study k. The Emax model is applied on the logit scale as before:

P (Yijk = 1 | dijk, λ,ED50, difTarget,E01,E02) = logit−1

(
E0k +

Emaxd
λ
ijk

EDλ
50 + dλijk

)
, (R.21)

where

Emax = difTarget

(
dTargetλ + EDλ

50

dTargetλ

)
,

with dTarget = 60 mg. The Yijk are independent conditional on the model parameters

and their doses. Denoting the collection of all responses and their doses by Y and D, the

likelihood can be written compactly as

lik
(
Y ,D; λ,ED50, difTarget,E01,E02

)
= P (Y | D, λ,ED50, difTarget,E01,E02)

=
2∏

k=1

ndk∏
j=1

njk∏
i=1

P (Yijk = 1 | dijk)Yijk (1− P (Yijk = 1 | dijk))1−Yijk .

(R.22)
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Applying Bayes theorem to (Y ,D), the posterior distribution, P (λ,ED50, difTarget,E01,

E02 | Y ,D,P50), is proportion to

P (Y ,D | λ,ED50, difTarget,E01,E02,P50)P (λ,ED50, difTarget,E01,E02 | P50) . (R.23)

The left term in equation (R.23) factors into

P (Y | D, λ,ED50, difTarget,E01,E02,P50)P (D | λ,ED50, difTarget,E01,E02,P50) .

(R.24)

The P50 is not predictive given the Emax model parameters. The usual ancillary condition

for the doses reduces the right term in equation (R.24) to P (D | P50), so the posterior

distribution is proportional to the standard form:

lik
(
Y ,D; λ,ED50, difTarget,E01,E02

)
P (λ,ED50, difTarget,E01,E02) .

The posterior distribution is evaluated using MCMC stochastic simulation methods.

The MCMC yields a large number of nearly independent draws from the posterior distri-

bution that can be subsequently used to evaluate complex estimands because they do not

require the derivation of asymptotic approximations for context-specific estimands.

III.2.1 Model output and checking

Standard approaches are applied to check the numerical validity of the MCMC fitting.

Three chains were fit to check the mixing of the MCMC chains. Figure R.4 displays the

sequence of parameters generated (trace plot) after an initial burn-in of 1000 draws. The

chains are well-mixed, appear stationary, and have low auto-correlation. The low auto-

correlation is confirmed in a plot of auto-correlations for each parameter in Figure R.5.

Gelman-Rubin diagnostics (not shown) support the stationarity and convergence.
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Figure R.4: Traceplot based on 3 chains from the MCMC fit of the Emax model. The burn-in
was 1000 iterations, and a thinning gap of 5 was used to ensure low auto-correlation.

e0[1] e0[2]

loglambda led50 difTarget

0 10 20 0 10 20

0 10 20 0 10 20 0 10 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Lag

A
vg

.  
au

to
co

rr
el

at
io

n

Figure R.5: Auto-correlations from the MCMC generated parameters of the Emax model.
The burn-in was 1000 iterations, and a thinning gap of 5 was used to ensure low auto-
correlation.
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The output of the MCMC fit is 10, 000 draws of the parameters from the posterior

distribution. Point estimates and intervals for the parameters can be computed from the

draws, but we emphasize that these are not a primary objective of the analysis, and we en-

courage the practice of demoting them to appendices because they are unreliably estimated

with some data sets, and they can be difficult to interpret. They are reported in Table R.1,

but note that the results are on the logit scale, which is not helpful for clinicians. Further,

the estimates in Table R.1 play no role in the subsequent analyses. All subsequent analyses

are computed from the full 10, 000 posterior draws of the parameters

Figure R.3 is the first analysis of the model fitting that is routinely reported. It provides

an interpretable graphical summary of the model results, and it is also useful for assessing

model fit. The solid model curves are computed from the 10, 000 MCMC draws by creating

a narrowly-spaced grid of doses. For each dose on the grid, the probability of response (after

back-transformation) is computed for each of the 10, 000 sets of model parameters. The

10, 000 probabilities, which are conditional on the simulated model parameters, are denoted

by pm,m = 1, . . . , 10, 000. They are computed using the formula in equation (R.21) with

the dose in that formula replaced by each dose on the grid. The medians of the 10, 000 pm

are plotted. The dark error bars are the 5th and 95th percentiles of the 10, 000 thousand

pm, which approximate the corresponding percentiles of the posterior distribution of the

response rate at each tested dose.

The grey intervals at each tested dose are the posterior predictive intervals for the sample

proportions in a new study matching the current study. They are computed by simulating

a sample proportion, denoted by ȳm, corresponding to each of the 10, 000 pm with the dose

group sample size matching the size in the study. For example, 68 patients were assigned

to the 60 mg dose in the first study. For each of the pm computed for the 60 mg dose, a

sample proportion was generated by drawing from a binomial distribution: Binomial(n =

68, pm)/68. This process yields 10, 000 ȳm drawn from the predictive distribution of the

sample proportion that would be observed in a future study with 68 patients receiving

the 60 mg dose conditional on the data actually observed in our two studies. Prediction

intervals, etc, are computed from simple summaries of the 10, 000 simulated ȳm. Note

that the predictive distribution is discrete (e.g., there are only 69 possible values), so a

90% intervals has at least 90% probability because exact achievement of 90% may not be

possible.

The posterior predictive intervals are useful for judging outliers and other patterns of

poor fit. The predictive intervals supplement the routinely computed posterior predictive

check for non-monotonicity. The value of this predictive check in the current example ap-

plied to the second study is 0.323. Details of its calculation are given in Section 2.4(SDOC)
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and not repeated here. Note that the predictive intervals and the non-monotonicity pre-

dictive check probability refer to the posterior predictive distribution derived from the

posterior distribution for the new compound after observing its dose response study(ies).

It does not refer back to the predictive distribution computed from the meta-data.

Parameter Posterior Median 90% Posterior Interval
λ 1.04 (0.53,1.88)

ED50 7.8 (3.5,49.4)
difTarget 2.26 (1.78,2.77)

E01 -0.65 (-1.02,-0.29)
E02 -0.9 (-1.27,-0.55)

Table R.1: Parameter estimation based on data from two studies.

III.3 Using the model output to guide dose selection

As can be observed from Figure R.3, the compound is highly active so there was very high

confidence it would achieve statistical significance in phase 3 studies. Clinical assessment

was that a dose yielding < 0.2 difference from placebo would be a failure, and a fully

successful dose would need to yield ≥ 0.3 improvement versus placebo. Table 2(SDOC) was

the primary model output used to select doses to satisfy these objectives; it is reproduced

here as Table R.2 for ease of reference, and the label ’Mean’ is replaced by ’Prop’, which is

a better descriptor for a responder endpoint.

Population Responder Rates Phase 3 Sample Responder Rates
Total Prop Probability Prop Probability
Dose Diff Diff> 0.2 Diff> 0.3 Diff Diff> 0.2 Diff> 0.3
2 mg 0.12 0.1 0 0.11 0.1 0.01
4 mg 0.21 0.58 0.07 0.18 0.39 0.06
6 mg 0.27 0.89 0.31 0.23 0.65 0.17
8 mg 0.31 0.98 0.6 0.27 0.81 0.33
10 mg 0.35 1 0.8 0.3 0.9 0.48
12 mg 0.37 1 0.9 0.32 0.94 0.58
14 mg 0.39 1 0.95 0.33 0.96 0.66
16 mg 0.4 1 0.97 0.34 0.97 0.72
18 mg 0.41 1 0.98 0.35 0.98 0.76
20 mg 0.42 1 0.99 0.36 0.99 0.8
30 mg 0.46 1 1 0.38 0.99 0.89

Table R.2: The estimated difference from placebo and the probability the difference exceeds
0.20 or 0.30. The left columns are results for the population values. The right columns are
based on the posterior predictive probabilities for observed responder rates from a phase 3
trial. The reduction in the differences for sample rates is due to dropouts.
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The left side of Table R.2 provides Bayesian estimates and inference for the population

values. For the dose in each row, the difference in the response rate between the dose and

placebo is estimated by the median of the 10, 000 differences in responder rates computed

from the MCMC model parameter output. The computation follows the same approach as

for the dose response curve in Figure R.3 except now the placebo response must also be

computed. It is denoted by p0m and the difference by dm = pm − p0m,m = 1, . . . , 10, 000.

The MCMC-simulated E01 from the first study were used when computing pm and p0m. The

placebo-adjusted difference is not sensitive to the which of the placebo responses is used

because the E0 nearly cancels in the difference, but unlike continuous data, the logit binary

model does not produce exact cancellation. The posterior probability that the response

rate from a dose exceeds 0.2 or 0.3 is precisely approximated by the proportion of the

10, 000 of dm that exceed these levels.

The population difference in responder rates is a hypothetical construct. In practice,

the phase 3 success criteria will be applied to the observed phase 3 estimates, which are

simple observed sample proportions with patients who drop out regarded as failures (the

handling of missing data has changed since the time these protocols were analyzed). The

predictive distribution for the sample placebo adjusted responder rate follows closely the

construction of the predictive intervals in Figure R.3. There are two differences: 1) the

sample size for the active dose in the planned phase 3 trial is approximately 200, and it

is 100 for placebo, and 2) 15% of the patients in the the phase 3 trial dropout and their

response status is set to failure regardless of the responder status generated for them before

consideration of dropout status. Dropout was assumed to be MCAR, and was implemented

by assigning an independent 15% dropout chance to each simulated patient.

The population placebo-adjusted responder rate for the 10 mg dose has an 80% chance

of exceeding 0.3, but after accounting for sampling variability and attenuation in observed

effect due to dropout, this probability reduces to 0.48. The 20 mg dose has 80% chance

of producing an observed 0.3 improvement criteria. Both doses are likely to achieve the

minimally acceptable criteria of 0.2 improvement. Due to safety assessments (not evalu-

ated here), both the 10 and 20 mg doses were evaluated in phase 3. The efficacy model

predictions were accurate. The 10 mg dose was approved, but the 20 mg dose was not

approved even though it was superior on efficacy by the amount predicted in Table R.2,

validating the decision to carry both doses into phase 3 development.

The development context is different for each compound, but the example presented

here illustrates how the MCMC output of the Bayesian Emax model can be flexibly adapted

to decision criteria specific to each compound under development without requiring the

derivation of new approximation formulas.
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