PROPOSED CHANGE TO AUDIT TESTING RULE

OLCC COMMISSION MEETING

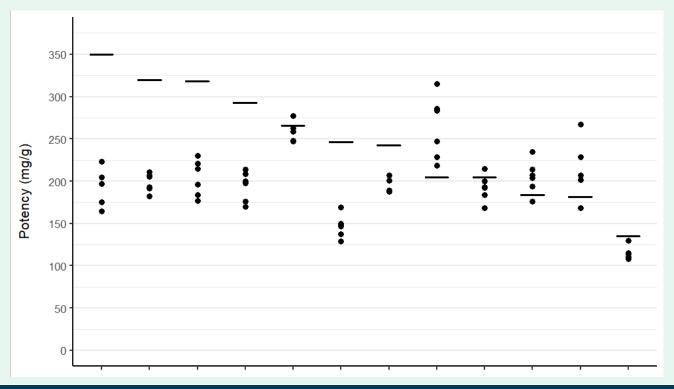
TJ Sheehy, OLCC Director of Analytics and Research November 17, 2022

WHAT IS THE PROPOSED RULE CHANGE?

- OLCC has had audit testing authority since the inception of the marijuana program
 - But major gaps included lack of clarity on:
 - What happens if a discrepancy between original test and audit test exists
 - Whether OLCC can require licensed labs to provide samples directly for testing
- Proposed rule change resolves these gaps by:
 - 1) Requiring labs to retain samples for a minimum period of time, and to provide to OLCC for audit testing if requested
 - 2) Creating structure related to how big of a difference in potency testing is "big enough," and what happens as a result

WHY DO WE NEED A RULE?

- The current market conditions create a *very* competitive environment, and THC potency numbers are critical to getting shelf space
- There has been a significant uptick in complaints (from labs about other labs, and from producers/processors about other producers/processors) related to "gaming" of potency testing
- Fidelity of testing is a major feature of the legal, regulated market –
 consumers should pay for what they're getting, and have confidence in its
 accuracy
- This new rule is a tool *in addition to*, not instead of, existing compliance tools to hold labs and other licensees accountable on sampling & testing


WHY DON'T CURRENT RULES SOLVE THE PROBLEM?

- ORELAP accreditation ensures technical proficiency, but not an adequate tool to prevent compliance issues
 - Labs undergo proficiency testing to prove they can detect required analytes – but they know when they are being tested
- Very difficult cases to prove, including who is at fault; multiple ways potency can be "gamed"
 - Fundamental problem is the incentive structure and licensees "voting with their feet" – labs getting the most business are those with the *highest* numbers, regardless of accuracy

WHAT HAS OLCC SEEN?

Recent "round robin" audit testing of usable marijuana found concerning results – highest original tests had the largest audit testing "drop off" (solid line = original compliance test, dots = round robin results)

DETAILS OF THE RULE CHANGE

- New proposed rules (OAR 845-025-5760) would establish a round robin testing program
- Round robin testing could not begin until after Jan 1, 2023 (when rules become
 effective), but all compliance tests done on/after <u>Dec 1, 2022</u> would be eligible to
 be checked under this program
- Audit testing that results in statistically significant difference compared to original compliance test could be required to be relabeled by OLCC
- No penalty or violation associated with "failing" the audit testing
 - If evidence of fraud or non-compliance is found (by either lab or client licensee), violations could be pursued – this program is in addition to, not instead of, current rules
- Goal is to flip the incentive structure from "get the highest result possible" to "get the most accurate result possible"

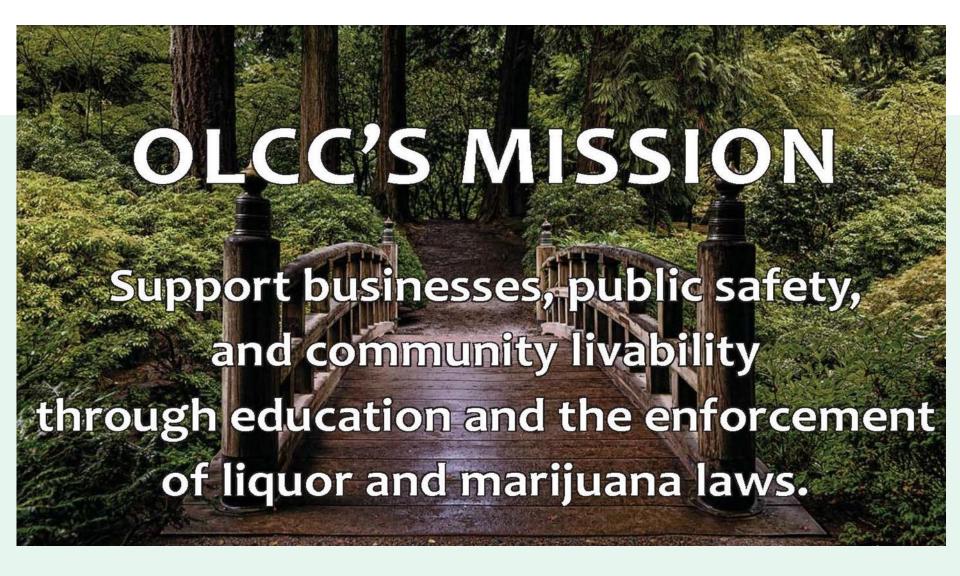
WHAT IS A T-TEST?

- T-test is a statistical method to determine when a difference between two groups is "real" vs. due to random variation
- Proposed rule establishes a threshold of 99% statistical confidence in other words, <u>if</u> the compliance test was accurate and representative of the true mean potency value, only 1% of samples would have that large of a difference
 - 99% confidence interval means it's *much more likely* that the original compliance test does not reflect the true mean potency of the batch
- T-test is calculated based on
 - 1) The size of the difference between the original potency test and the "round robin" average
 - 2) The variation ("spread") between the labs participating in the round robin

HOW DO YOU CALCULATE A T-TEST?

Example 1: significant difference between round robin and original compliance test (two-sided one-sample t-test where the original compliance test is "mu," the known specific value)

Round Robin Results	Original Compliance Result	:	
23%	35%	Round Robin Avg:	25%
24%		Round Robin Std Dev:	2.2%
26%		Number of Round Robin Results:	4
28%		Std Error of Mean	1.1%
		df:	3
		t-statistic:	-8.79426
		p-value:	0.003098
		Significant Difference at 99% level	



HOW DO YOU CALCULATE A T-TEST?

Example 2: **not** a significant difference between round robin and original compliance test

Round Robin Resu	lts Original Co	ompliance Result	
31%	35%	Round Robin Avg:	25%
27%		Round Robin Std Dev:	5.1%
19%		Number of Round Robin Results:	4
24%		Std Error of Mean	2.5%
		df:	3
		t-statistic:	-3.85528
		p-value:	0.030831
		NOT a significant difference	

