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Comments are especially requested on the completeness and clarity of the report, and:

e The current approaches outlined in the report and in the graphic highlighting key concepts.

o All “Additional Issues for Consideration” sections and whether they sufficiently address both technical and
socio-technical concerns, and whether such issues and concerns are appropriate for future science-backed
standards and technique development.

e Whether the report in its entirety, presents coverage of the digital content transparency technical
landscape.

e Current state of the art for provenance data tracking techniques which may not be already addressed in the
report, including watermarking techniques, as well as use cases for implementation.

e Testing, evaluation, and auditing techniques discussed in the report and technical literature references to
expand on the techniques that are discussed.

e Technical mitigations for preventing and reducing harms from synthetic child sexual abuse material (CSAM)
and Non-Consensual Intimate Images (NCII) beyond what is included in the report, as well as further
evaluations and studies done on the efficacy of these various mitigations, including their application in open
versus closed models.

e Potential development of standards and techniques on digital content transparency approaches.

Comments on NIST Al 100-4 may be sent electronically to NIST-Al-100-4@nist.gov with “NIST Al 100-
4, Reducing Risks Posed by Synthetic Content: An Overview of Technical Approaches to Digital Content
Transparency” in the subject line. Comments may also be submitted via www.regulations.gov: enter
NIST-2024-0001 in the search field, click on the “Comment Now!” icon, complete the required fields,
including “NIST Al 100-4, Reducing Risks Posed by Synthetic Content: An Overview of Technical
Approaches to Digital Content Transparency” in the subject field, and enter or attach your

comments. Comments containing information in response to this notice must be received on or
before June 2, 2024, at 11:59 PM Eastern Time.
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imply that the entities, materials, or equipment are necessarily the best available for the purpose. Any mention in
the text of commercial, non-profit, academic partners, or their products, or references is for information only; it is
not intended to imply endorsement or recommendation by any U.S. Government agency.
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1. Summary

Generative artificial intelligence (Al) technologies can generate realistic images, text, audio, video, as
well as multimodal content. This enables novel applications with promising potential for good while also
posing new risks to trust, safety, transparency, and credibility in digital information and
communications.

This report examines the existing standards, tools, methods, and practices, as well as the potential
development of further science-backed standards and techniques, for: authenticating content and
tracking its provenance; labeling synthetic content, such as using watermarking; detecting synthetic
content; preventing generative Al (GAI) from producing child sexual abuse material or producing non-
consensual intimate imagery of real individuals (to include intimate digital depictions of the body or
body parts of an identifiable individual); testing software used for the above purposes; and auditing and
maintaining synthetic content.

This report reflects public feedback and consultations with diverse stakeholders, including those who
responded to a NIST Request for Information.

Digital content transparency, refers to the process of documenting and accessing information about the
origin and history of digital content. Together, the approaches we discuss below can help manage and
reduce risks related to synthetic content in four ways:

e Attesting that a particular system produced a piece of content,
e Asserting ownership of content,
e Providing tools to label and identify Al-generated content, and

e Mitigating the production and dissemination of Al generated child sexual abuse material and
non-consensual intimate imagery of real individuals.

Digital content transparency provides a vehicle for individuals and organizations to access more
information about the origin and history of content, which may contribute to trustworthiness, but does
not guarantee it, and in some cases may actually undermine it. While transparency can help identify
when content is being misrepresented, it can also create a false sense of trust, such as when a piece of
content appears legitimate based on technical measures but is then manipulated through non-technical
means (e.g., taking a legitimate piece of content out of context). Ultimately, the impact of transparency
depends on the effectiveness of the technical methods used and on how people access and interact with
digital content. With respect to the latter, digital information literacy as well as both formal and informal
education can impact how individuals perceive content.

In this document, “synthetic content” refers to “information, such as images, videos, audio clips, and
text, that has been significantly altered or generated by algorithms, including by Al.”

This report provides an overview of technical approaches for provenance data tracking and synthetic
content detection with issues for consideration, along with a review of the current testing and
evaluation for digital content transparency techniques.

For selected techniques, the document identifies ongoing research and related research gaps. It also
discusses technical mitigations for preventing and reducing the production and distribution of synthetic
child sexual abuse material (CSAM) and non-consensual intimate images (NCIl) and applies the concepts


https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.nist.gov/artificial-intelligence/request-information-nists-assignments-under-executive-order-14110-safe
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
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discussed to the Al lifecycle as outlined in the NIST Al Risk Management Framework, or Al RMF (NIST Al
100-1).

The technical approaches described in this report provide building blocks that can be used to improve
trust in digital content and the institutions and individuals who produce and disseminate it by indicating
where Al techniques have been used to generate or modify digital content. None of these techniques
offer comprehensive solutions on their own; and the value of any given technique is use-case and
context specific and relies on effective implementation and oversight. Because this report focuses on
technical approaches there may be normative, educational, regulatory, and market-based approaches
not described in this report.

Science-backed standards forged through global actions, via international standards-setting bodies,
several of which are mentioned in this report, can promote the adoption and interoperability necessary
for these tools to have the desired impact.

There is no perfect solution to solve the issue of public trust and harms stemming from digital content,
but additional, and improved approaches to synthetic content provenance, detection, labeling, and
authentication techniques and processes are important capabilities to support trust between content
producers, distributors, and the public.


https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf
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2. Harms and Risks from Synthetic Content

Though synthetic content, may not be inherently harmful, it can accelerate and exacerbate pre-existing
harms and negative impacts across the open information ecosystem, such as information integrity
issues, synthetic child sexual abuse material (CSAM) and non-consensual intimate imagery (NCII), fraud,
and intellectual property and copyright issues. Taking a risk-based and human-centered approach to
synthetic content, within the use case and context is important, given that there are benign use cases
for synthetic content, and the approach adopted also depends on the audience.

The various issues that synthetic content presents affect how individuals consume information, can have
negative effects on public safety and democracy. The negative consequences of synthetic content can
uniquely and disproportionately impact individuals and communities who face intersectional
discrimination and bias on the basis of gender, race and ethnicity, and other factors. The digital content
transparency approaches discussed in this report on their own cannot comprehensively address the
myriad of harms and risks that synthetic content poses but could be applied as tools to reduce harms
and risks from synthetic content.

Synthetic content that supports misinformation and disinformation, synthetic CSAM and NCII, and fraud
and financial schemes have concentrated or diffused effects depending on many factors. The spread of
synthetic content that supports mis or disinformation narratives on social platforms is what makes it
harmful and have diffused effects across a target population. Disinformation that is created by a
malicious actor but is never disseminated across social platforms will not have its intended effects to
shape perception. In comparison, synthetic CSAM and NCIl is harmful at its creation with concentrated
effects on specific individuals when such content depicts or appears to depict, real individuals, and could
be used for sextortion schemes, blackmail, re-victimization, and more. Further, even when synthetic
NCIl and/or CSAM does not depict or appear to depict, real individuals, their generation and
dissemination contribute to the normalization of gender-based violence and violence against children.
Synthetic content could also produce concentrated harms by bolstering fraud and social engineering,
and impose financial costs on victims of these schemes, while having diffused effects on wider markets,
businesses, and the economy.

The harm and risks of synthetic content depend on factors including but not limited to the severity of
harm from the content itself, target audience for the synthetic content; context in which content is used
or misused,; and sophistication of the actor creating and/or disseminating the content; and any social,
economic, and health-related (including mental health) costs incurred in association with the creation
and/or dissemination of the content.

Specific techniques may be suitable in reducing or limiting particular harms and risks. Provenance data
tracking techniques that record the origin and history of digital content can be used to affirm both the
authenticity of content, and in some cases, the authority of the entity who issued the content. Content
authenticity does not directly translate to trustworthiness; authentic content that has provenance
information available can still be harmful, depending on the content itself, nature of the source, and
how it may be shared across platforms. However, these techniques may be useful for resourced good
faith actors to secure their content and provide content transparency to their target audiences.

Synthetic content detection techniques may be more suitable for narrow use cases for analysts to
determine whether specific adversarial content is Al-generated or not, or to detect covert watermarks in
content. These techniques often have results that may be difficult for a layman or the wider public to
interpret and may be more suitable as an approach for those conducting specific analyses, or for entities
such as social media platforms, and specialized civil society organizations.
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For high-risk or high-integrity applications, which could include election security, defense applications,
CSAM/NCII investigations, and others, taking a defense-in-depth! approach by utilizing more than one
method will likely be important for organizations, to mitigate potential overreliance on any one
approach or technique. The application of digital content transparency approaches to mitigate harms
and risks from synthetic content is still relatively new; these techniques will continue to evolve, and a
variety of technical and sociotechnical evaluations are needed to guide their implementation.

Below is a table that outlines how different digital content transparency approaches and specific
methods are currently applied and adopted, and how they could be used to mitigate harms and risks.
Further information about these approaches and methods as well as their limitations are discussed in
detail throughout the report. Lastly, more specific use case and context-based mitigations and controls
for synthetic content are available in the Guidelines for Evaluating and Red-Teaming Generative Al
Models and Systems and Dual Use Foundation Models? and the Artificial Intelligence Risk Management
Framework: Generative Artificial Intelligence Profile.?

Digital Content
Transparency
approach

Example Methods

Current Applications

Current Adoption

Potential Use Cases to
Mitigate Harms and
Risks

Provenance data
tracking

Metadata recording,
digital
watermarking

Determining content
authenticity, the
source or origin of
content

Mainly for image
and video, by high-
resource software
and media entities
(with some
hardware entities)

- IP protection via
robust watermarks

- Transparency about
content origins and/or
history

ISynthetic Content
Detection

Automated content-
based detection,
provenance data
detection, human-
assisted detection

Determining whether
content is Al-
generated, the

presence and contents

of provenance
information

Diffused across
industry, with some
civil society
adoption, mainly
focused on deepfake
detection.

- Analytical
assessments of
adversarial

content through
advanced multimodal
detection

- Public figure focused
detection (deepfakes)

- Detection of covert
watermarks for
developers and
platforms

1 Defense-in-depth refers to Information security strategy integrating people, technology, and operations capabilities to establish variable
barriers across multiple layers and missions of the organization. See https://csrc.nist.gov/glossary/term/defense_in_depth

2TBA

31BA
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3. Current Approaches, Issues, and Opportunities

This section of the report describes current techniques and related issues and opportunities.

The most commonly used techniques to directly disclose to the audience how Al was used in the content

creation process include:

e content labels (e.g., visual tags within content, warning labels, pre-roll or interstitial labels in
video and/or audio, and typographical signals in text highlighting generated Al text with
different fonts),

e visible watermarks (e.g., icons covering content indicating Al usage where the bigger the icon,
the harder its removal), and

e disclosure fields (e.g., disclaimers and warning statements to indicate the role of Al in
developing the content, and acknowledgments to provide more context to the Al contribution
and credits to reviewers).

In contrast, indirect disclosure techniques require active effort to detect. These include:
e covert watermarks
e digital fingerprints, and
e embedded metadata.

They involve purposefully applying labels that are machine-readable and interpretable by technical
systems. These are often identifiable by third-party entities and end users.

Both direct and indirect labels can be applied automatically during content creation or they can be
applied post-generation.

Publishers and content platforms can use different types of labels to disclose content sources, such as
clearly differentiated modalities of the generated content (image, text, audio, video).



Current Approaches

Digital

Content
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Data Tracking
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Figure 1. Digital content transparency mechanisms can be broken down into provenance data tracking and
synthetic content detection, each with multiple subcategories. Provenance Data Tracking can be applied to both
synthetic and non-synthetic content where Synthetic Content Detection is employed to determines whether a
given piece of content is synthetic or not.

This section highlights the current technical approaches for digital content transparency that this report
covers in subsequent sections. The main techniques that the report discusses are provenance data
tracking and synthetic content detection. Content authentication is not a technique, but rather a
process that reveals the authenticity of all digital content (not just synthetic) by examining its origin and
history. Therefore, it operationalizes provenance data tracking methods.

is a process that utilizes provenance data tracking methods (metadata recording
and digital watermarking) to determine the authenticity of content by examining
its origin and history. (i.e., the content has not been altered, or at least that the
visual (or semantic) characteristics of the content are unchanged).

Content
authentication

records the origin and history for digital content, which assists in determinations

Provenance data 540yt quthenticity. It consists of techniques to record metadata as well as overt

tracking and covert digital watermarks on digital content. Provenance data tracking can
help to establish the authenticity, integrity, and credibility of digital content.
refers to techniques, methods, and tools used to classify whether a given piece of
Synthetic content is synthetic or not. Synthetic content detection may detect the existence
content of provenance information, such as digital watermarks, that was recorded, or it
detection

may look for other characteristics to help determine whether content has been
generated or manipulated by Al.
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3.1. Provenance Data Tracking

Provenance data tracking can help establish the authenticity, integrity, and credibility of digital content
by recording the content’s origin and history. It consists of techniques to embed or store metadata as
well as overt and covert digital watermarks on digital content to indicate synthetic or authentic origins
of content. Current methods for provenance data tracking include digital watermarking and metadata
recording. These techniques vary in their implementation and their robustness across various types of
content (images, text, audio, video).

3.1.1. Digital Watermarking

Digital watermarks have long been used to indicate content origins, with those shown on stock
photography and other image previews being one popular usage. In terms of digital watermarking
standards, The Advanced Television Systems Committee (ATSC), has produced well known set of
standards for audio and visual content such as ATSC A/334 and ATSC A/335 (Appendix A).

Digital watermarking involves embedding information into content (image, text, audio, video) while
making it difficult to remove. Such watermarking can assist in verifying the authenticity of the content or
characteristics of its provenance, modifications, or conveyance. Watermarks can be either overt or
covert depending on the content’s audience. (See further digital watermark use cases and applications
in the Appendix B and Appendix C.)

As an example, in an image watermarking system, a user would input an image, a watermark, and an
embedding security key into an encoder to get a security key for extraction together with the
watermarked image. The encoder algorithm controls how the embedding of the watermark will be
applied to the image. On the other hand, a decoder uses the security key to extract the watermark from
the watermarked image. Afterwards, the extracted watermark can be compared to the original
watermark for verification.

Each type of watermarking has advantages and limitations.

Overt digital watermarks can be perceived directly by the human senses (e.g., a semi-transparent logo
affixed to an image, text, or other audio, or video labels) by the audience of the content. An overt
watermark may indicate the origin or source of content, including whether it was synthetically
generated. If overt digital watermarks are limited to a small portion of the content, they can easily be
cropped out or removed, diminishing their value and purpose. However, if these watermarks are applied
across a large swath of the content, removing them can make that content too corrupted to be usable.
In addition, overt watermarks may not be easily machine-readable, which can be a concern for
identifying these watermarks at scale.

Covert digital watermarks are machine-readable watermarks involving subtle perturbations of the
content that are hard for humans to detect. For example, a watermark can be embedded by altering the
least significant bit (LSB) of some pixels in an image. These watermarks can be more secure than overt
watermarks, as they are typically harder to remove. A covert watermark must be first detected to verify
its presence by a digital watermark detector and then as applicable extract any information embedded
within the watermark supporting the provenance of the content, which will have some nonzero
probability of error. The effectiveness of a covert watermark is contingent on how accurately detectors
can distinguish when the watermark is present and extract any additional information that may be
included. Considerable research is focusing on how to embed covert watermarks into different types
of digital content.



https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://assets.mofoprod.net/network/documents/In_Transparency_We_Trust.pdf
https://link.springer.com/chapter/10.1007/978-981-13-7166-0_59
https://link.springer.com/chapter/10.1007/978-981-13-7166-0_59
https://link.springer.com/chapter/10.1007/978-981-13-7166-0_59
https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/

1 Digital watermarks are most effective when they possess the following attributes:

Low distortion

Robust

Secure

Sufficiently high-
capacity

Efficient

Minimally
disruptive

The watermark should not affect the quality of how a human would perceive the
watermarked content compared to the original content

The watermark should be robust under various types of typical innocuous
modifications—such as compression, filtering, or cropping—so that it can still be
detected or extracted even after content has been altered.

The watermark should be secure against unauthorized attempts by malicious users
to remove or tamper with the watermark information.

The watermark should have sufficient capacity to embed required amounts of
information for its intended purpose, such as ownership information, copyright
marks, or authentication data. A watermark may only need, in some use cases, to
encode one bit (e.g., whether a given system generated the content). If more
information is encoded in the watermark, it may be human-readable information,
such as text or logos, or machine-readable information, such as binary codes or
digital signatures. (In principle, a sufficiently high-capacity watermark could embed
arbitrary metadata.)

The watermarking process should be efficient and computationally feasible,
allowing for fast and reliable embedding and detection of the watermark
information.

The watermarking process should be transparent to the user, meaning it should
not require significant changes to the content creation or distribution process and
maintain downstream uses.

3 This table highlights some of the design choices in utilizing watermarks for digital content:

Fragile or
Robust

Overt or Covert

Blind or Non-
Blind

Watermarking techniques can be more or less robust to modifications and secure
against attacks. Fragile watermarking methods are designed to become invalid in
the face of any changes to the content, while robust methods are designed to
withstand certain types of attacks or modifications.

Overt watermarks, such as logos or text overlayed on an image, are visible or
audible to the content’s normal audience, while covert methods are designed to be
detectable only by those actively looking for them.

Watermarking techniques can be blind or non-blind based on whether the original
content is required for detecting the watermark. Blind watermarking methods do
not require the original content for detection, while non-blind methods do. Non-
blind watermarks add extra security to the content as it needs the original content
to verify the watermark (such as for copyright use cases on licensed images), while


https://link.springer.com/article/10.1007/s11277-021-08177-w
https://www.sciencedirect.com/science/article/pii/S0925231222002533
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844175
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blind watermarks can be more suitable for data hiding applications (such as covert
communication) or even preventing the sharing of protected media online.

Private or Public Watermarking techniques can be private or public based on the availability of the
algorithms or cryptographic information needed to apply or validate the

watermark.
Reversible or Reversible methods entail embedding the watermark into the digital content in
Irreversible such a way that the original content can be restored given the needed information

to extract the watermark and retrieve the original content. In irreversible methods,
the semantic distortion that is caused by modifications to the content cannot be
reversed. (This distinction does not apply to watermarks that are applied during
generation, where there is no original to revert to.)

3.1.1.1. Technical methods for covert watermarks

Methods for covert watermarking of GAl outputs must modify some characteristic of the content that
can be subtly perturbed; this typically results in a change to the statistical properties of the content
(such as perplexity measuring uncertainty in predicting the next word, and burstiness measuring the
variation of sentences in language models). There also must be a systematic way of perturbing these
characteristics so that the watermark can easily be generated, and a detector can recognize with high
probability both when it is present and when it is not.

Below are some examples of properties that can be perturbed, along with the applicable types of
content and examples that leverage these properties. These examples of properties that can be
perturbed should be connected to the above design choices table to account for specific contextual use
cases.

. Potentially Stage of Risks and technical
Explanation . Examples . . e .
applicable to application limitations
Individual Predictably Vulnerability to
samples chosen pixels attacks (e.g.,
(pixels, audio or audio compression,
samples) samples can cropping, filtering,
be altered to scaling), overt
embed _ LSB-based Applied distortions in the
content such Ir.nage, audio, watermarki  post- content, limited
asa video ng generation robustness,
watermark. To security concerns
minimize including a tradeoff
perceptual between capacity
distortion, and
modifications imperceptibility,
can be limited and dependency


https://ieeexplore.ieee.org/abstract/document/5735066
https://ieeexplore.ieee.org/abstract/document/5735066
https://ieeexplore.ieee.org/abstract/document/5735066

Frequency
coefficients

to a small and
relatively
unimportant
portion of
each selected
pixel or
sample, such
as the least
significant bit
(LSB).

Every piece of
content that
consists of
samples laid
out in time
and/or space
can be re-
represented in
terms of
spatial or
temporal
frequencies
instead of
individual
samples. The
balance
between some
of these
frequencies
can be
perturbed
with minimal
impact on
human
perception,
much as JPEG
compression
discards some
of these
frequencies
from images
with little
impact.

Image, audio,
video

Discrete
Cosine
Transform
DCT
watermark,
Discrete
Fourier
Transform
DFT
watermark

Applied
post-
generation

10

on the host media
(e.g., texture of
images)

Vulnerable to
geometric attacks
(cropping, scaling,
rotation), and
requires high
computing
resources and
processing time to
run.


https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568

Initial noise
output for
diffusion
models

Token
probabilities

Many recent
GAl models
are based on
“diffusion
models,”
which start
from a full
output that
consists of
random noise,
then
iteratively
refine the
noise into an
output
matching the
prompt. The
initial noise
output can
embed a
predefined
pattern, which
can later be
recovered by
someone in
possession of
the model .

Large
language
models
typically
generate text
one “token”
(or sub-word
chunk) at a
time. The
probabilities
of different
tokens
occurring can
be used to
embed
information.

Image, text
(in principle),
audio, video

Text

Tree ring
watermark

LLM
watermark
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Applied
during
generation

Applied
during
generation

Robustness against
GAl-based removal
methods and
attacks, Flexibility
in message
embedding (e.g.,
fixed vs dynamic
messages), Security
risks and privacy
concerns,
Computations and
economic costs,
Applicability to
various modalities,
and it is more
suitable in private
settings.

Robustness against
modifying text
attacks, Perplexity
and quality
degradation,
Coordination
between LLM
provider and
detector, and
scalability to long
text contents



https://arxiv.org/abs/2305.20030
https://arxiv.org/abs/2305.20030
https://arxiv.org/pdf/2301.10226.pdf
https://arxiv.org/pdf/2301.10226.pdf
https://arxiv.org/pdf/2310.15264.pdf
https://arxiv.org/pdf/2310.15264.pdf
https://arxiv.org/pdf/2310.15264.pdf
https://openreview.net/pdf?id=FpaCL1MO2C
https://openreview.net/pdf?id=FpaCL1MO2C

For many of these properties, a variety of techniques can be used to systematically perturb them into a
watermark. Example methods include:

Direct
encoding

Cryptographic
hashing or
encryption

Explanation

Where the
element to
be perturbed
is a piece of
data that is
contained in
the output,
the
watermark
data can be
embedded
directly as
replacement
data.

A
cryptographic
hash function
can be used
to generate a
“hash value,”
a pseudo-
random
number, that
determines
how
perturbations
are
performed.

Potentially applicable
to (properties)

Individual samples,
frequency coefficients.

For example, the LSBs
of image pixels can be
replaced with
watermark
information. (This
would not work for
methods that perturb
the generation process,
as that process is not
directly encoded in the
output.)

Individual samples,
frequency coefficients,
token probabilities

For audiovisual
content, a hash of the
original image, or data
derived from it, can be
embedded via direct
encoding. Hashing can
also be used for text
watermarking: at each
step, the hash value is
used to designate “red”
and “green” lists of
tokens, and then the
model preferentially
selects a next token
from the green list in a
largely covert but
statistically detectable
way. To enable private
operation, an

12

Examples

LSB-based
watermarking,
Discrete
Cosine
Transform
DCT
watermark,
Discrete
Fourier
Transform
DFT
watermark

Robust
hashing for

Risks and Technical
Limitations

Can affect imperceptibility,
Computational complexity,
Detectable alterations in the
signal, Security risks due to
ease of watermark removal,
Robustness risks due to
transformations in the
watermarked content, and
low embedding capacity
leading to inadequate
embedding of information;

Fragile to minor changes in
the content as cryptographic

visual

watermarking,
LLM

Watermarking

hashes are highly sensitive,
Limited amount of
embedded information due
to a fixed-size hash, and
combining cryptographic
hashes with watermarking
adds more complexity in
implementation compared
to standalone watermarking
techniques.



https://ieeexplore.ieee.org/abstract/document/5735066
https://ieeexplore.ieee.org/abstract/document/5735066
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.mdpi.com/2078-2489/11/2/110
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://arxiv.org/pdf/2301.10226.pdf
https://arxiv.org/pdf/2301.10226.pdf
http://ivizlab.sfu.ca/arya/Papers/IEEE/Multimedia/2001/Oct/Cryptography%20and%20Watermarking.pdf
http://ivizlab.sfu.ca/arya/Papers/IEEE/Multimedia/2001/Oct/Cryptography%20and%20Watermarking.pdf
http://ivizlab.sfu.ca/arya/Papers/IEEE/Multimedia/2001/Oct/Cryptography%20and%20Watermarking.pdf

[ER

O o0ON OuUpw N

=
o

A machine
learning
system can
be trained to
perturb a
piece of
contentina
way that is
reliably
detectable.
The
difference
between this
technique
and direct
encoding is
that the
perturbation
happens
during the
data
generation
process, and
not after the
output is
generated.

Machine
learning

encryption cipher with
a key known only to
the model operator can
be used as the hash
function.

Any GAI systems can be
fine-tuned to generate
recognizable
watermarking patterns
in the course of
generation.

Machine learning
perturbation methods
usually require training
an accompanying
machine learning-
based detector. These
methods are easiest to
use for private
watermarks or where
the watermarking
algorithm is not known
publicly.

3.1.1.2. Additional Issues for Consideration

Stable
Signature,
(commercial
tool)

Computationally intensive,
May introduce lack of
interpretability/explainability
of the embedding and
detection process,
Performance may degrade
for data outside the training
distribution, and vulnerable
to deepfake generation
networks to remove the
watermarks.

Technical trade-offs: Watermarking techniques may require trade-offs between:

Robustness (the durability of a watermark) against adversarial uses and computational complexity
(the resources required to implement watermarking). Less complex algorithms may not provide
adequate durability against adversarial manipulations, with a negative impact on the security and

performance of the watermark.

Robustness and low distortion: Another trade-off is between robustness and low distortion. A key
challenge is ensuring that the watermark cannot be easily removed or altered while minimizing
distortion. Typically, the mechanism by which a watermark is embedded entails the modification of
components within digital content. As a result, the introduction of these changes in the digital content
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https://arxiv.org/abs/2303.15435
https://arxiv.org/abs/2303.15435
https://www.mdpi.com/2079-9292/12/1/74
https://www.mdpi.com/2079-9292/12/1/74
https://www.mdpi.com/2079-9292/12/1/74
https://www.mdpi.com/2079-9292/12/1/74
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7057071&tag=1
https://www.mdpi.com/2078-2489/11/2/110
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creates a verifiable signal that can be identified and extracted. Reaching a high degree of robustness can
adversely impact content quality. Conversely, minimizing how much the watermark distorts the content
could make it easier to remove the watermark (or, equivalently, harder to detect it which can lead to
higher error rates)—which might decrease its robustness.

Capacity and quality trade-offs are also relevant. Embedding a watermark can reduce the quality of the
content by making or inserting alterations that could corrupt the original digital content. Moreover, for
some types of watermarks, increasing the capacity of the watermark further reduces the quality.
Capacity refers to the amount of information that can be hidden in a watermark, without perceptibly
distorting the digital content. Watermarks can be intrusive and negatively impact the visual and auditory
components of audiovisual content or potentially the fluency or accuracy of text. For example, this is
especially true of visible watermarks on color images, and even more so if the watermark itself is
colorful: the watermark may interact in more complex ways with the color pattern in the host image
than in a grayscale or binary image.

Adversarial tampering: Some watermarks, particularly those that are fragile or lack robustness, can be
removed or tampered with, which may make them inadequate for purposes that require high integrity.
As previously noted, overt watermarks applied to small portions of a piece of content can easily be
edited out. Black-box attacks, or attacks conducted without watermark access, against digital
watermarks using adversarial machine learning have demonstrated success in tampering with digital
watermarks, even without knowledge or access of how the watermarking mechanism works. To date,
researchers have shown the vulnerability of many covert watermarks to tampering and manipulation
and how it is possible to evade or forge current watermarking methods. However, adversarial attacks
against more robust forms of watermarking, such as watermarks that are cryptographically applied, are
difficult to execute by comparison. There is some initial research that demonstrates how image
watermarks can be designed to be robust against state of the art watermark attacks.

Most watermarking techniques involve software that must be run either after an output is generated or
as an additional set of operations during the generation process. The watermarking behavior is not built
into the model itself. Thus, if someone has access to the model’s source code, they can easily modify
that source code to disable watermarking; they do not typically need to retrain the model. In cases
where the generative model itself has been trained to watermark, it may be possible to remove that
behavior with limited additional training.

Trust: While digital watermarks can contribute to information integrity, they cannot guarantee it in a
vacuum. Further research is needed on how digital watermarks may affect public perception or trust in
digital media content. Also, false positives and false negatives can occur when using watermarks to
authenticate the origin of content, reducing trust in the accuracy of watermarks and the watermarking
process. Furthermore, watermarks can be exploited to create a false sense of security or trust in content
if malicious actors are able to forge trusted watermarks or to add their own watermarks and apply them
to misleading or untrustworthy content. Such an attack, if discovered, would likely also reduce trust in
all similar content, impacting trust in the open information ecosystem. Synthetic content is a global
phenomenon, which affects digital citizens around the world. There may be lower capacity to implement
digital watermarking approaches in lower-resourced markets and regions, particularly for civil society
organizations in these regions.

Scale: Many covert watermarking methods or protocols rely on unique, method-specific detectors. If
different Al model developers created their own unique watermarking schemes, users may have to
utilize multiple detection services created by these developers to know the source or origin of synthetic
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https://arxiv.org/abs/2306.04634
https://arxiv.org/abs/2306.04634
https://www.sciencedirect.com/science/article/pii/S0925231222002533#b0310
https://www.sciencedirect.com/science/article/pii/S0140366422000664
https://www.sciencedirect.com/science/article/pii/S0045790621002408?ref=pdf_download&fr=RR-2&rr=85fb71f4ffc77cfc
https://ieeexplore.ieee.org/document/8553343
https://arxiv.org/pdf/2306.01953.pdf
https://arxiv.org/pdf/2306.01953.pdf
https://arxiv.org/pdf/2306.01953.pdf
https://arxiv.org/html/2401.04247v1
https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/
https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/
https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/
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content created by different GAIl tools, which can be inefficient and increase the burden on the
audience, particularly for platforms. Open source standards and/or publicly available databased or
resources that host multiple detectors would make the identification of watermarks streamlined, but
come with security risks. There is also an educational barrier that must be addressed, for users to
understand how to utilize detection tools for watermarks and interpret results. Furthermore, scaling is
challenging for methods that involve cryptographic keys or machine learning tools. If one entity holds
the keys or algorithms, they must be trusted and may become a bottleneck, either as a single point of
failure or a process inefficiency. However, if the keys or algorithms are possessed by many entities, they
could allow any actor to apply the watermark and permit bad actors to sidestep watermark generation
by repeatedly generating content until they find an output that can fool the detector. Detection tools
that are open source or otherwise not subject to rate limiting may be particularly susceptible to such an
attack.

Opportunities for Further Development: Considerable research is focusing on how to embed
covert watermarks such as statistical watermarks applied during generation, onto different types of
digital content. More research is needed to understand how the application of digital watermark
labels may affect public trust in digital content and the risks of inadvertent harms. For example,
people with disabilities and those with limited language skills regularly using generative Al to create
content may be discriminated against if the content they publish on platforms is labeled as Al-
generated using watermarking, given potential existing issues of trust and credibility in Al-
generated content online, and in relation to the context and use cases for generation. More
research also is needed on emerging watermarking techniques such as statistical watermarks, ways
to improve scale for detection techniques, how to improve watermark security through advanced
cryptography that reveals minimal information to watermark detectors and future advanced
cryptographic techniques such as zero-knowledge proofs, and developing best practices for
implementation.

3.1.2. Metadata Recording

Metadata can provide information about a set of data and its content and contribute to digital content
transparency. Metadata can be generated whenever digital content is created, uploaded, downloaded,
or modified. It can be stored either internally in the same file or structure as the data (embedded
metadata), or externally in a separate file. Almost all software applications use some type of metadata,
including for document management, social media, emails, websites, databases, and geospatial objects.

Metadata can generally travel as part of the data it describes and provides information about the
content's properties, structure, origin, purpose, time and date of creation, author, location, standards,
file size, quality, versions, editing history, and other details. Thus, metadata can be applied to all media
types (images, text, audio, video) but can be manipulated by anyone. These properties can improve the
accuracy of metadata, since the metadata should be readily changed whenever data is changed.
However, metadata is often stripped when files are shared, such as via social media platforms.
Metadata generally can also easily be wiped, often for privacy reasons such as when content is uploaded
on social media platforms or through adversarial tampering.

Metadata also can be used to help differentiate between authentic and synthetic or manipulated
content, contributing to data integrity. Metadata recording approaches can also explicitly indicate
synthetic origins of content.
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https://eprint.iacr.org/2023/1776.pdf
https://foundation.mozilla.org/en/research/library/in-transparency-we-trust/research-report/
https://arxiv.org/pdf/2309.06779.pdf
https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/
https://link.springer.com/book/10.1007/978-3-319-72652-6
https://www.sciencedirect.com/science/article/pii/S2210832717300753?via%3Dihub
https://blogs.loc.gov/thesignal/2013/04/social-media-networks-stripping-data-from-your-digital-photos/
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Using Digital Fingerprints to Identify Metadata: Digital fingerprints, which are hashes that are
predictably generated from the content itself, can also be used to generate unique identifiers to which
metadata can be associated externally to the content itself. Digital fingerprints are commonly used
across the technology industry to tag and identify known harmful, illegal and/or sensitive content,
especially image content, through the sharing of content through hash databases between technology
platforms, civil society, and other entities. Hashing (including both cryptographic and perceptual
hashing) allows information about content to be shared without sharing the content itself, which serves
to preserve privacy. Several databases and tools have been created to store hashes of harmful and/or
illegal images and metadata about these images.

Two notable examples of the use of digital fingerprints are the Global Internet Forum to Counter
Terrorism (GIFCT) and Tech Against Terrorism. The GIFCT uses its hash-sharing database to rapidly
identify and share signals of terrorist and violent extremist activity with all of its member organizations,
which include many large technology platforms. Tech Against Terrorism’s Content Analytics Platform
(TCAP) works similarly and automates the detection and removal of verified terrorist content on
technology platforms, by hashing the content as well as via metadata about the content. (Later sections
of this document on preventing and reducing the generation of synthetic CSAM and NCII discuss the use
of hashes for content in greater detail.)

The most common types of metadata used for tagging or labeling digital content include:

Descriptive provides some descriptive information for discovery and identification such as file
metadata type, author, title, language, date created, and other specifications.

Structural provides logical and physical structural information about the containers of data and
metadata indicates how compound objects are put together—for example, how frames are

ordered to form a video. It describes the types, versions, relationships, and other
characteristics of digital materials.

Administrative provides information about the source of the content, its ownership, copyrights,

metadata licensing, and control permissions for easier management of the resource
Technical provides technical information like runtime, file type, size, resolution, color space,
metadata encoding format, compression algorithm, and other specifications.

Provenance provides information on the origins of a data resource, ownership, any

metadata transformation that the data may have undergone, usage of the data, and the

archive of the data resource. This information helps track the lifecycle of a resource.
Provenance metadata is generated whenever a new version of a data set is created
and indicates the relationship between different versions of data objects. This allows
users to query the relationship between versions and includes either or both fine- or
coarse-grained provenance data on data resources.

Appendix C includes some of the most commonly known metadata standards across specific and
multimodality data types.
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3.1.2.1. Authenticating Metadata

Metadata can be cryptographically signed. A cryptographic or digital signature is “an electronic analogue
of a written signature that provides assurance that the claimed signatory signed, and the information
was not modified after signature generation.” When metadata is signed with a digital signature, it can
provide confidence about the contents of the metadata by determining the authenticity of electronically
stored information.

A digital signature algorithm includes a signature generation process and a signature verification
process, to provide assurance that the claimed signatory signed the given piece of information. A
signatory uses the generation process to create a digital signature on data via a private key, which is
kept secret. The verifier then uses the verification process via a public key that corresponds to the
private key to verify the signature. In addition, the checksums and/or a digital signature can be
embedded as metadata to verify the integrity of a digital content, allowing users to verify that the
content has not been altered since its creation.

Utilizing digital signatures to sigh metadata increases integrity, security, and tamper-evidence of the
metadata. Unsigned metadata without verifiable credentials is not tamper-evident nor has it been
stored with secure encryption. Metadata that is proactively embedded in content is more secure when it
has been validated by digital or cryptographic signatures. (See below for additional considerations.)

3.1.2.2. Metadata and Content Authentication

Metadata can be used to verify the origins of content and how the history for a piece of content may
change over time. Current entities creating specifications for metadata to verify content authenticity
include the Coalition for Content Provenance and Authenticity (C2PA) and the International Press
Telecommunications Council (IPTC). Further, secured metadata information that is disclosed to users can
assist with information integrity and increase confidence in the content issuers’ digital identity.

Provenance data tracking for metadata is only comprehensive if the software or hardware used to
generate digital content and any other platform or tool used to modify or publish the content uses the
same interoperable framework for retaining and securing metadata and establishing confidence that a
particular entity issued the content.

For example, the IPTC has updated its Photo Metadata User Guide to include guidelines for using
embedded metadata to signal “synthetic media” content created by GAIl systems. They have developed
the “digital source type” vocabulary, which now covers a range of Al-generated types such as:

Trained algorithmic

. is created using a model derived from sampled content.
media

Composite synthetic

. is a composite that includes synthetic elements.
media

is created entirely by an algorithm not based on any sampled training
Algorithmic media data (for example, an image created by software using a mathematical
formula).
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Some industry stakeholders (e.g., Google, Midjourney, Shutterstock) are starting to adopt the IPTC
metadata in their outputs.

In an ideal interoperable digital environment, individuals would have access to a piece of content’s chain
of provenance information in order to maximize content transparency. For example, metadata attached
to an Al-generated image would convey its origin and what time it was created, along with the artist’s
name (attached in an opt-in manner). When that image is posted on a social media platform that has
opted into an interoperable framework for processing metadata, the metadata would be available to
users interacting with the image. In practice, however, this is challenging to implement and scale for
various reasons, such as platforms stripping metadata for privacy and data management reasons. Some
representative research systems and prototypes were proposed in 2018, 2019, and 2021.

3.1.2.3. Additional Issues for Consideration

Privacy: Without privacy mechanisms and protections used in tandem with metadata recording,
individuals and organizations could experience sensitive metadata leaks and violations of privacy. For
example, if users are not aware that metadata is embedded at the capture or generation of synthetic or
authentic content, they may inadvertently reveal private information about when and where an image
was taken, and with what device. Furthermore, it is generally recommended that all metadata recording
solutions include a process for users to opt-in and determine which metadata can be removed for
privacy concerns. Systems that host metadata information should also ensure that privacy mechanisms
are in place to prevent privacy leakage through the visibility of sensitive metadata across the network.

If metadata attached to content lacks these controls, then user privacy—especially for vulnerable
populations—could be at risk. Malicious entities could co-opt metadata recording solutions to appear to
promote transparency, while not providing any opt-in mechanism for tagging metadata and exploiting
access to user information. Many platforms strip metadata from files on the Internet to prevent
metadata leakage. Balancing the sharing of metadata for content transparency while also allowing users
to take control over data that is shared is paramount.

Trustworthiness and Integrity: A recent study on provenance of digital content revealed users’ lack of
confidence in the trustworthiness of media when it did not have provenance information attached to it.
Further, research shows that users do not clearly disambiguate provenance information from the
credibility of the digital content itself, both of which demonstrate the limited and complicated role of
provenance information in addressing the risks of mis- and disinformation in digital content. Lastly, the
ability to tamper with metadata can undermine even the value it provides to people attempting to
evaluate and understand content.

Security: Embedding metadata into content poses a wide array of concerns. Malicious attacks on
metadata are possible even with secure infrastructure in place. Using a digital signature hardens the
security posture of a metadata recording solution. The addition of cryptographic proofs for metadata
can help prevent data tampering, as asymmetric encryption ensures that metadata has been secured by
its signatory. However, encryption schemes and digital signatures are not foolproof. A variety of
malicious attacks can be conducted on digital signatures to undermine their validity and
trustworthiness. These attacks exploit parts of the digital signature creation system or the digital
signature verification system. For example, the digital signature creation system does not necessarily
protect the signer from signing a completely different document or piece of content. In this case, the
attacker deceives the signer to sign a document that can benefit the attacker or be inconsistent with the
signer’s interests. Attackers could also modify information prior to the computation of the signature by
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adding or removing data before it is secured. These examples illustrate that even with digital signatures
in place, vulnerabilities can be exploited to infringe on metadata security. Mitigation approaches for
digital signature attacks include strong authentication measures, regularly updating digital signature
software to ensure latest security patches, verifying the authenticity and validity of digital certificates
before accepting digitally signed documents, encrypting sensitive data at storage and transmission
times, and performing regular audits.

Metadata management and quality: The technical challenges for metadata management include the
need for organizational processes, such as metadata management principles, and security solutions
while optimizing for system performance and reducing latency. The value of embedded metadata is
contingent on processes to create, input, and manage it. For example, systems to track metadata (or any
provenance technique) will be more successful if they are interoperable across different platforms and
metadata is not stripped. How external systems interact with a system that tracks metadata is an
important consideration. Organizations may choose to establish principles to manage and secure
metadata at an organizational level. Those principles could include guidance about how metadata
descriptions can be constructed to be useful without being exhaustive; that also could help with
scalability and the understanding of metadata labels. Exploring and deploying techniques such as digital
signatures while reducing computational or communication overhead and/or latency costs can assist
with implementation.

Furthermore, as hardware, software, and file formats become outdated, the need for continued
accessibility necessitates migration of metadata to new platforms or systems. This may be addressed in
part by storing metadata in formats that are resilient to technological changes and compatible with
future systems. The compatibility of metadata is also bolstered by the use of a standard and open
format for usable and reusable metadata.

Lastly, the completeness and accuracy of metadata is important in its management. Metadata
completeness refers to the presence of all possible relevant attributes and information necessary to
describe a digital resource adequately. This includes descriptive details, administrative information,
structural relationships, and technical specifications. Incomplete metadata can result from manual entry
errors, lack of standardized guidelines, or automated processes that fail to capture all relevant
information. Metadata accuracy refers to the correctness and reliability of the information contained in
the metadata. Accuracy can be compromised due to human error, outdated or incorrect information
sources, or inconsistencies in metadata creation practices. Incomplete or inaccurate metadata can lead
to unreliable descriptions of digital content and can weaken digital content transparency.

Opportunities for Further Development: Further research is needed to understand how metadata
recording may impact user privacy and security, security of the metadata itself, how to mitigate
adversarial uses and modifications of metadata recording, how it may impact trust and information
integrity in digital content, the development of robust and open metadata standards, and how to
develop best practices on completeness vs accuracy tradeoffs and scaling issues such as migrating
metadata in new platforms or systems in metadata management.

3.1.3. Effectiveness of Provenance Data Tracking Techniques Across Different Types of Content

This section describes how provenance data tracking approaches vary in their current levels of
robustness and effectiveness across different types of content and applications.
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3.1.3.1. Images

Synthetic images are widely recognized as contributing greatly to harms from misinformation,
disinformation, CSAM, and NCII. Provenance data tracking techniques are further developed for images
than for any other medium, though adoption still remains low to reduce synthetic content harms.
Frameworks such as C2PA, as well as ongoing digital watermarking research, largely focus on
provenance data tracking approaches to images. Images can be manipulated in various ways, such as by
altering pixels or by adding overlays, which also makes the medium better suited than others to
provenance data tracking approaches.

Early research shows that even for robust covert watermarking protocols, it is possible to remove, alter,
or generally manipulate watermarks. Some researchers also report that a family of regeneration attacks
on invisible watermarks applied to images can render watermarks ineffective. Further, bad faith actors
could apply watermarks to untrustworthy content, both authentic content and malicious synthetic
content, to undermine information integrity. There are similar issues with the potential abuses of
embedded metadata: actors could utilize existing provenance specifications to infringe on user privacy,
and reduce information integrity broadly, as discussed in previous sections.

3.1.3.2. Text

Text is considered by far the most difficult modality when it comes to maintaining provenance given the
nature of text—it is far easier to modify a pixel of an image with minimal distortion in comparison to a
word. Provenance data tracking methods for text can be more challenging, given that structural
modifications to text content could be easier to spot and subsequently removed. This can also be
affected by the structure of written contracts, government official documents, blogs, news reports, and
other text material. Much of the reported work on provenance data tracking for text focuses on
differentiating synthetic text from human-written text. The main tracking methods proposed to deal
with this issue include watermarking; perplexity estimation; negative log-likelihood curvature;
stylometric variation methods (differentiating between human linguistic style and structure compared
to Al text style); burstiness estimation (differentiating between the word choice and vocabulary size of
humans compared to Al text outputs); and classifier-based approaches (building classifiers based on
training data of human-written text and Al-generated text).

All provenance data tracking techniques discussed in this report when applied to text have limitations
and can be vulnerable to tampering. For example, watermarking methods can be defeated or weakened
through paraphrasing by humans or by machines. When it comes to perplexity and burstiness
estimation, some research has shown that provenance techniques are not reliable metrics or indicators
of human writing—especially in settings such as academic writing or with non-English languages. In
many cases, the detection algorithm needs to keep track of specific features, which is computationally
expensive and unrealistic to implement. Even with humans, each individual has their own writing style,
and this can make it difficult to depend on a universal human writing style guide or feature set to
support algorithmic detection. Finally, classifier-based methods generally target specific models by
training on samples of their generated text or by utilizing the model itself, therefore their ability to
classify new text from unknown models can be highly degraded.

3.1.3.3. Audio

The recent proliferation of Al-based synthetic audio has had great impact on applications such as voice
assistants, text-to-speech, voice authentication, music, audiobooks, and podcasts. Meanwhile, synthetic
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voices created a new category of GAl models related to voice impersonation and synthetic audio
recordings, raising concerns about the negative impact of audio deepfakes.

Several watermarking algorithms for audio have been explored. Most fit into two categories: frequency
domain and time domain methods. The former takes watermarks and embeds them into transform
coefficients, which are inverted to robustly conceal a watermark within an audio file. Time domain
methods—where watermarks are embedded by modifying host signal samples—are simpler, but can
lack robustness. The main issues with existing techniques for audio watermarks are robustness and
computational costs, especially when considering long-duration audio. There are also newer techniques
for audio watermarking, including using a trained neural network, which adds covert perturbations to
the original audio in order to produce the watermark. Metadata can be added to audio files when Al-
generated audio is created and can be cryptographically-secured—though as discussed in previous
sections methods exist for manipulating embedded metadata.

3.1.3.4. Video

Risks regarding video authenticity have emerged as a public concern due to the rapid development of
video generation tools. A digital video provides the appearance of movement across time. This makes
digital video processing data intensive and requires significant bandwidth, processing power, and
storage.

The process of extracting and finding evidence from a video to confirm its authenticity or integrity is
known as video forensics. Many theories and methods used in video forgery detection are borrowed
from image forensics. Although it is possible to analyze a video frame by frame using image forensics
techniques, there are two reasons why this approach is ineffective: videos are more computationally
demanding than images, and image-based methods may not be reliable for uses such as frame
replications or deletions in videos.

Video tampering techniques generally can be divided into active and passive approaches. Watermarking
and digital signatures are active techniques that verify content using features in the video. This data is
then integrated into the video content at the moment of recording or capture and communicated to the
receiver. However, tampering can occur before the digital signature or watermark is applied. On the
other hand, with tamper-evident watermarks, in cases when the video is edited, this may suggest that
the video has been manipulated. Another category of techniques actively enables devices (e.g., cameras,
video recorders) to insert metadata information about the video source at the moment of capture.
These are relatively new and not yet widely used, although they are expected to gain more attention in
the near future. There are tradeoffs among watermark capacity, invisibility, and robustness. For
example, increasing the capacity (i.e., embedding more information) requires altering more components
in the host content which can compromise invisibility, while high robustness might require limiting the
capacity to allow for more difficult to detect watermarks. On the other hand, increasing invisibility may
require embedding watermarks in less obvious ways leading to potentially lower watermark robustness.

Opportunities for Further Development: Further research is needed to: understand how
watermarks and metadata recording techniques can be abused by adversarial actors across all
modalities of content, determine if provenance data tracking techniques for audio such as robust
watermarking can be adopted, inform sociotechnical evaluations for how disclosures on audio
content can be designed, and on how to improve the application of these techniques broadly for
text content. There should also be further research on the sociotechnical effects and the
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effectiveness of labeling synthetic and authentic content, and any resulting impacts on the
information environment.

3.1.4. Synthetic Content Detection

Synthetic content detection refers to techniques, methods, and tools used to classify whether a given
piece of content or portion of content is synthetic or not. Synthetic content detection may rely on
provenance information that was recorded, or it may look for other signals to help determine whether
content has been generated or manipulated by Al. Reliable and robust methods for detecting synthetic
content can mitigate and reduce harms and risks from the misuse of synthetic content when integrated
within sound technical and social frameworks.

Detection methods relying on humans require extensive labor and high costs due to the large volume of
data and are often subject to variations depending on individuals’ lived experiences and expertise. The
methods reflect a constant cat-and-mouse game between the detection and generation communities.
As soon as a new detection method is created, models improve, and adversaries learn new ways to
avoid detection. Furthermore, detectors are often tied to and may only perform well on specific
generators.

Various tools are available to classify and detect synthetic content. Most are designed to detect content
modifications or distinguish between Al-generated and human-produced outputs, and many utilize
machine-learning and deep-learning detection techniques.

The DARPA Semantic Forensics (SemaFor) program takes a robust approach to detection by focusing and
utilizing technologies that can detect, attribute, and characterize semantic inconsistencies in falsified
multimodal media at scale. The DARPA SemaFor product also provides integrity scores to determine the
probability that a piece of digital content is manipulated and also characterizes the “why,” or what the
intent of the multimodal media content could be.

Synthetic content detection techniques can broadly fit into three categories.

Automated content-based detection techniques are applied to identify synthetic content after it has
been generated. These can include several different types of classification techniques that are designed
to identify and separate synthetically-generated image, text, audio, and video, from authentic content
across these modalities.

Provenance data detection techniques are used to identify digital watermarks (both overt and covert)
embedded into synthetic content. (See earlier descriptions of provenance data detection.) Covert
watermarks are machine-readable, while overt watermarks may be more difficult for detection
algorithms to detect, given that they may not be machine-readable. Manipulations of digital content can
also be traced utilizing metadata for synthetic content and deepfakes.

Human-assisted detection refers to the human-in-the-loop methods used in the detection process. It
involves the cooperation of Al tools, crowd workers or data workers who handle and label data, and
domain experts to improve the accuracy, explainability, and robustness of synthetic content detection
techniques. Human-in-the-loop methods can be used for a wide range of contexts, including to validate
and assess detection model outputs, though the evolving sophistication of GAl models may change the
effectiveness of human labels in discerning whether content is synthetic or not. Human-in-the-loop

22


https://www.darpa.mil/program/semantic-forensics
https://openaccess.thecvf.com/content/CVPR2021W/WMF/html/Xiang_Forensic_Analysis_of_Video_Files_Using_Metadata_CVPRW_2021_paper.html
https://www.itic.org/policy/ITI_AIContentAuthorizationPolicy_122123.pdf

O ooNOUL b

10
11
12
13
14

15
16
17
18

19
20
21
22
23

24
25
26
27
28

29
30
31
32

33
34

35

36
37
38
39
40

methods may involve and augment content-based detection and provenance data detection
methodologies above.

3.1.4.1. Issues for Consideration for Detection Techniques across Mediums

Issues for consideration for all detection techniques across modalities are summarized below.

Generalizability and Practicality: Incorporating diverse data, using ensemble models, and enabling
continual learning are important strategies for improving the generalizability of detectors in real-world
scenarios. As the amount of data is larger, computation power for such detection models still needs to
improve for practical operational environments. Understanding the computational complexity of
detectors is important for optimizing their performance and suitability for real-world applications.

Interpretability and explainability: Interpretability is crucial for synthetic content detection. Users must
be able to form a coherent representation of the result that helps them understand how to act on it.
(For example, they may need information about uncertainty.) In addition, it can be helpful for the results
to be explainable so that end users are able to understand the mechanisms by which a model produced
the decision.

Reproducibility: When using original data, code, and analysis, it is important for independent
researchers to produce the same or similar results as the original experiment or method. The trend
towards reproducible results can be promoted by providing the public with comprehensive datasets,
human scores/reasons, experimental setups, and open-source tools/codes.

Comprehensive Data Inputs: There is a lack of benchmark datasets that can comprehensively evaluate
existing detection technologies. These datasets should include real-world noises, diverse languages,
compression, post-processing, and transmission methods. In addition, reusing synthetic content as input
in subsequent model training can pose a challenge to detection technology. The accuracy and reliability
of detectors can be improved by measuring the ambiguity of inputs and conducting further studies.

Robustness to security, privacy, intellectual property, and bias: The risks of synthetic content raise
concerns in various domains related to security, privacy, intellectual property, and bias. GAl models rely
on vast amounts of individual data, including sensitive information, which can lead to data breaches and
unauthorized access to personal information. Adequate measures addressing those risk factors and
developing robust detectors for synthetic content can help improve content integrity.

Incorporation of human-assisted techniques: Human collaborative decision-making is helpful in refining
the task of synthetic content detection. For example, humans can help train and fine-tune detection Al
models over time by providing feedback and correcting errors which can ultimately enhance the
accuracy of their performance.

The detection methods for different modalities of content described below include techniques that fall
into these various categories.

3.1.4.2. Synthetic Image Detection

Synthetic image detection refers to the process of identifying images that have either been generated by
Al or manipulated using generative models such as Generative Adversarial Networks (GANs),diffusion
models including their text-to-image products, neural radiance fields (NeRFs), variational autoencoder
(VAE), among others. Given the rapid advances in image synthesis technology, there is a need to detect
manipulated visual content in various application domains to preserve information integrity.
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Synthetic Image Detection Techniques

Detection challenges arise from the highly realistic visual quality of synthetic images, and also the
complexity of evolving Al and manipulation techniques. Systems for detection must be continuously
improved to accurately detect synthetic images generated by rapidly advancing models. There are
different ways to categorize synthetic image detection methods. The forensic community has often used
a twofold of an active and passive detection method for identifying between authentic and synthetic
images. Active detection methods focus on detecting whether an image is authentic or not or if it is
forged by analyzing information hidden in an image at the time of its capture, using techniques such as
watermarking, digital signatures, and cryptography. Passive detection methods, on the other hand, do
not rely on any additional information in the image. Instead, they aim to find traces left (e.g., image pixel
regularities or inconsistencies, tampering operations) during the image processing phases.

Recent studies in June 2020, February 2022, and May 2022 have focused on detecting deepfake images
by using deep learning models, machine learning models, and statistical models. These methods
describe some details in the Synthetic Video Detection Techniques below.

Some other researchers employ the following techniques for synthetic image detection.

Backbone models are pretrained networks that extract features from input images. These models
comprise several layers of CNNs, including convolutional and pooling layers, and activation functions
that are stacked to gradually minimize the spatial resolution of the input image while increasing their
depth. These models can be used to differentiate between authentic and synthetic images.

Fake face detectors train models on face images and use differences in frequency statistics or global
image features to distinguish between authentic and synthetic face images. General synthetic image
detectors use special designs to classify general images, removing the limitation of face content.
Quality-based sampling detectors involve training detectors on realistic synthetic images selected based
on their quality scores according to a probabilistic quality estimation model. The method can lead to
higher detection performance across various concept classes, such as training a detector on human
faces and testing on synthetic animal images, thereby enhancing the overall effectiveness of synthetic
image detectors. Furthermore, a practical guide discussed how adding synthetic images to object
detection models can greatly improve their performance, especially when combined with authentic
images. Utilizing this can enhance the performance of synthetic image detection models.

Manipulation Trace methods involve analyzing digital correction, overlapping, file format and structure
analysis, metadata, and other enhancing effects to identify any inconsistencies or traces of
manipulation. There are various traceable tools available such as Traces Extraction Network (AMTEN)
and Manipulation Classification Network (MCNet) for detecting synthetic images.

Reverse Image Search/Trace methods involve searching for GAl model fingerprints using reverse image
search engines, which predict network architecture and loss functions from the estimated fingerprints of
the model used for synthetic images.

Synthetic Image Detection Performance

The accuracy of synthetic image detectors varies depending on the specific tool and the type of
synthetic images being analyzed. The popular metrics used for image and video detection performance
include accuracy metrics, as well as a graphical analysis such as ROC (receiver operating characteristic)
curve and area under the ROC curve (AUC). AUC is a performance measure used to evaluate the
classification capability of a model, especially when addressing imbalanced data, and is widely used to
evaluate various Al models. Detection performance for synthetic images remains high without post-
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processing (accuracy between 52% and 76%, AUC between 75% and 93%). When synthetic and
authentic images are post-processed (e.g., compressed and resized), as is common on social media
platforms, detection accuracy decreases (accuracy is between 50% and 62%, AUC between 53% and
91%). The accuracy in this context indicates the proportion of true positives and true negatives among
all evaluated detection cases. Experiments revealed that detecting a synthetic image by a specific
generator is relatively straightforward. It can be achieved by training a binary classifier on a dataset
comprising both authentic images and synthetic images created by that particular and only that
generator, as the approach does not generalize well. Reported accuracy results on different training and
test subsets using different methods range from 61% to 70%. Other performance measures
demonstrate accuracy ranging from 50% to 62% and AUC from 52% to 91% with the post-processed
images. This challenge is particularly prominent in real-world scenarios where the generator is often
unknown during the training process, making it difficult to differentiate between authentic and synthetic
images.

Additional Issues for Consideration

Robustness and Practicality: Synthetic data utilized for model training purposes, (which is distinct from
synthetic content),used for detection may not fully capture the complexity and variability of authentic
empirical data, which can limit the effectiveness of detection models trained on synthetic data. When
detection models are trained on specific synthetic images they may not work well when applied to real-
world scenarios, and may not be reliable if the images present artifacts that are significantly different
from those seen during training. Post-processing, such as compression or resizing, exacerbates this
challenge. The computational intensity of the detection models still needs to improve for practical
operational environments. See details about synthetic image detection datasets in the Appendix D.

Societal Impact: In the application of synthetic image detection technologies, there may be wider
societal implications and ethical considerations of the risks of synthetic content, and the design
detection models to combat these risks. Some risks include impersonation, potential erosion of trust in
institutions, synthetic CSAM and NCII, exacerbation of social divisions, threats to democracy and
election integrity, and national security. When developing detection models, developers must consider
these various risks and ensure that detection capabilities are built to detect harmful content that could
have adverse societal effects and also work to improve detection accuracy for harmful images.

3.1.4.3. Synthetic Video Detection

Synthetic video refers to video manipulations, including deepfakes. A deepfake video is generated using
machine learning or deep learning techniques to create realistic videos of real people in a malicious
manner. Synthetic videos can also include manipulations to generate events that may not have ever
occurred that could affect public safety, such as a false terror attacks or false natural disasters, or even
fictional videos that are benign but do not reflect reality.

Adversaries can use available video manipulation tools for malicious impersonation, enabling fraud,
creating misinformation and disinformation, and likely posing risks to democratic systems. Detecting
deepfakes is becoming increasingly challenging due to their realistic nature and their rapid proliferation,
leading to an “arms race” to develop new detection methods. Deepfakes generation may be categorized
as involving: identity swap, attribute manipulation, expression swap, entire face synthesis, and source
video.
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Identity swap (or face is a method of replacing the face of a person in the target video with the

swap)

Expression swap (or
puppet master)

face of another person in the source video.

is a method of replacing the features of the mouth in the source image
and producing a new face with the same identity but a different
expression.

Attribute manipulation is a method of modifying some facial attributes (e.g., color of hair or
(face editing / retouching) skin, gender, age, adding glasses).

Entire face synthesis is a method of generating a non-existing face or object.

Source video

is a method of analyzing the content of a source video to understand
relevant attributes such as facial expressions and body language. The
method then maps a voice recording to the video, making it appear as
though the person in the video is speaking the words in the recording.

1  Synthetic Video Detection Techniques

2 Recent studies in June 2020, February 2022, and May 2022 have focused on detecting deepfake or

3 manipulated videos by using deep learning models, machine learning models, and statistical models.

Deep Learning
(DL) detectors

Machine Learning
(ML) detectors

Statistical-based

Forensics-based

identify specific artifacts produced by their generation models. These models can
extract or learn visual artifacts and features directly from the video frames. These
features may include handcrafted features, spatio-temporal features, face
landmarks, biological signal clues, among others, which help identify
inconsistencies that may indicate the presence of a deepfake or manipulated
video.

utilize feature selection algorithms to generate a feature vector, which is then
used this vector as input to train a classifier to detect manipulations or deepfake
videos.

utilize different statistical measures, such as examining the shortest paths, photo
response non-uniformity (PRNU) or mean normalized cross-correlation scores to
distinguish between authentic and synthetic videos. Popular methods are
Expectation-Maximization (EM) to extract a set of local features, Total Variational
(TV) distance, Earth Mover's (EM) distance, Kullback-Leibler (KL) divergence, and
Jensen-Shannon (JS) divergence, among others.

detectors utilize the differences in frame-level features such as noise patterns or
motion features. File structural analysis can be leveraged to determine the
originality of a file employing unique device or GAl model characteristics
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Spatial-based detectors leverage the power of DNN models to capture the subtle differences or
artifact clues between authentic and synthetic from the spatial or spatio-
temporal domain.

Frequency-based detectors investigate the differences or frequency artifacts between authentic
and synthetic from the frequency domain.

Synthetic Video Detection Performance

Similar to image detection, the accuracy of synthetic video detectors varies depending on the specific
method and the type of synthetic video. The performance is not robust to post-processing operations
like compression, noisy effects, visible artifacts, among others. Although various studies show different
performance results for synthetic video detectors, performance measures of deepfake detectors have
shown for accuracy ranging from 62% to 99% and AUC from 82% to 98%. See details about synthetic
video detection methods/results and datasets in Appendix D.

Additional Issues for Consideration

Generalizability: in general, synthetic video detection methods are trained for a certain data and
compression level and demonstrate low generalization to unobserved datasets and scenarios, resulting
in significant performance degradation.

Robustness: When dealing with low-quality videos, such as high levels of noise, low compression rates,
or resizing, detection methods tend to perform lower when compared to high-quality videos. Adding a
noise layer to the detection network that can account for different types of data degradation may
improve system’s robustness.

Computational cost: Processing time has become a critical factor due to the high volume of videos and
media platforms for streaming. Future research should include how to develop efficient video detection
techniques.

Benchmark and societal impact: there is a lack of standardized experimental methods that can facilitate
meaningful comparisons among diverse datasets, scalability, and reliability of various detection
methods. Additionally, there is a dearth of systematic or quantitative research on the perceptual and
societal impact components that contribute to the deceptive nature of synthetic videos.

3.1.4.4. Synthetic Text Detection

The advancement of large language model (LLM) capabilities has made it difficult for humans to discern
Al-generated text from human-written text, underlining a need for transparency about the use of LLMs
in various contexts. LLMs are known for producing inaccurate or false outputs which have been called
“hallucinations” or “confabulations,” and they also can be used to generate false and/or misleading
information at scale. For these reasons, being able to detect LLM-generated content is important to
increase digital content transparency.

Synthetic text detectors use parameters based on text features such as language, structure, perplexity,
and burstiness. Perplexity measures how well the model is able to predict the next word in a sequence
of words. Burstiness measures how predictable a piece of content is by the uniformity of sentence
length and structure. Some detectors rely on language models similar to those used in Al writing tools to
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evaluate the predictability and language patterns of the text. These content detectors are being used by

some educators to check students' writing, by businesses to ensure the originality of published content,
and by individuals to verify the authenticity of text on the Internet. Other detectors rely on factual
inconsistencies (e.g., fact-checking database and reasoning models) and metadata analysis (e.g.,
anomalies detection in content metadata such as timestamps, location, and author information). It
should be noted that the efficacy of many detection tools like these is being debated.

Synthetic Text Detection Techniques

Techniques shown in the Appendix D can be classified into the categories described as follows:

Watermarking
detectors

Zero-shot
detectors

Fine-tuning LM
detectors

LLMs as
detectors

Adversarial
learning
detectors

Human-assisted
detectors

have two components: embedding and detection. Embedding inserts a
watermarked text (e.g., a hidden signal or pattern) into the output of the LLMs,
which assists with provenance data tracking, while detection identifies the
watermark from the Al-generated text.

detect Al-generated text with no need for prior training on labeled data or fine-
tuning samples. The technique uses distinctive features and statistics (e.g.,
grammatical analyses, word density, structural attributes, constituent length,
inconsistencies) as key indicators in distinguishing Al-generated text from human-
generated text.

use a fine-tuned Language Model (LM) method in detecting LLM-generated text.
This involves taking a pre-trained LM model and adapting it to a more specific
dataset or task at hand. It optimizes specific sub-components of the model with a
loss function to detect errors or inconsistencies in text. Most approaches require
paired samples for supervised training processes.

use Instruction Tuning of LLMs for document and sentence text detection, enabling
LLMs to detect generated text by leveraging their pre-training knowledge. The
method involves cross-examining one LLM with another to discriminate text
generated by either themselves or other LLMs, leveraging fluency and errors in the
text.

differentiate between human- and LLM-generated text by exposing them to
adversarial examples, thus improving their accuracy. This involves the
configuration of an attack model alongside a detection model, with the iterative
confrontation between the two culminating in enhanced detection.

leverage both human and machine discrimination capabilities to efficiently
distinguish between human- and LLM-generated text, utilizing human prior
knowledge and analytical skills as well as learning from the model’s behavior.

Synthetic Text Detection Performance
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A variety of metrics are used to measure the performance of synthetic text detectors depending upon
their use in different scenarios. Detection performance varies depending on the methods and datasets
used. Watermarking technology has significantly advanced in recent years and can now frequently label
and identify text generated by language models. Zero-shot detectors can enhance detection accuracy,
and some LLM-based detectors are capable of exhibiting superior detection performance, robustness,
and resilience to various attacks. Fine-tuning language models often tends to overfit their training data
or the source model's training distribution, leading to a decline in performance when dealing with cross-
domain or unseen data. Moreover, language model-based detectors are limited in handling data
generated by different models since the detectors are fine-tuned on specific datasets for a given task.
Human-assist annotators can improve their performance over time but have limitations with handling
large volumes of data.

Overall, detection performance significantly decreases with various attacks such as paraphrase attacks,
adversarial attacks, prompt attacks, and due to data ambiguity. While some initial research has shown
that retrieval-based detection methods could increase the robustness of Al-generated text detection
against paraphrase attacks, further research is needed to defend against different kinds of attacks. In
addition, it is essential to conduct benchmark studies in diverse testing scenarios. Rigorous testing and
evaluation can improve understanding of detectors’ capabilities and limitations and aid in developing
more effective strategies for identifying LLM-generated text. The existing detection methods for text are
a work in progress and need further evaluation and improvement to align claims of high performance
with actual robustness, reliability, and generalizability.

Additional Issues for Consideration

Robustness and Detection Quality: Robustness and detection quality are current issues for synthetic
text detection. Most detectors have been designed for English-language text, and there is a need to
optimize their performance across various languages. The performance of detectors decreases in real-
world scenarios, highlighting the need to improve their robustness for practical applications. The quality
of LLM-generated text is also affected by the complexity or learning of the prompts used, which can
make it difficult for detectors to accurately identify text generated via elaborate prompts. This also
makes it challenging for evaluators to measure detector performance.

Some detectors identify Al-generated text by analyzing parameters such as word occurrence,
positioning, frequency, and style. However, they may not be able to distinguish between different types
of GAl models. Additionally, there is a limit to the range and diversity of benchmark datasets that can be
used to comprehensively evaluate existing Al-generated text detection technologies; see details in the

Appendix D.

High-risk applications: Socio-technical issues for consideration include the usage of immature text
detection techniques in high-risk applications. These applications may be included in academic settings
or in the detection of Al-generated misinformation and disinformation. When detectors have been used
in academic settings to confirm the academic integrity of writing, given a lack of accuracy, students have
been wrongfully accused of cheating with Al technology, putting their academic futures at risk. False
positives with Al-based text detectors have been reported as a clear issue with dangerous
consequences. Similarly, text detectors can be inaccurate and imperfect tools for determining whether
content is synthetic or not as well as determining whether misinformation and/or disinformation
narratives may be Al-generated. This is especially problematic in non-English languages, as most
detectors have been designed for English-language applications. Language model sophistication is also
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rapidly increasing, making detection a bigger challenge. Moreover, some research shows that using
some of these detectors may not be appropriate in various scenarios.

3.1.4.5. Synthetic Audio Detection

As the quality of synthetic voice generation advances, the challenges and complexities of detection are
increasing. There are two types of synthetic audio fields: Text-to-speech (TTS)-based and imitation-
based.

The TTS-based method transforms text into natural speech in real-time via two steps. First, clean and
structured raw audio is collected, along with a text transcript of the audio. Second, the TTS model is
trained using the collected data to build a synthetic audio-generation model.

The imitation-based method transforms source speech (secret audio) so that it sounds like another
speech (target audio) without changing the linguistic content. Its primary purpose is of the secret audio.
To replicate the attributes of a specific voice, the style, intonation, or prosody of the spoken signal may
be adjusted. This can be useful for applications such as voice impersonation.

In addition to traditional audio generation methods, some generation techniques exhibit voice
fingerprint artifacts and inconsistencies that can be captured through frequency domain analysis over a
spectrogram. Mel Frequency Cepstral Coefficients (MFCCs) are commonly used in speech-processing
techniques. Using MFCCs has been shown to produce better results for synthetic audio detection than
directly feeding the raw audio signal into the model.

Synthetic Audio Detection Techniques

Detection techniques can be divided into the following ML and DL methods. DL is considered a subset of
ML that uses multi-layered neural networks to enable machines to learn more complex representations
of data in a human-like way. :

ML detectors involves identifying speech patterns or detecting anomalies in features that
deviate from natural speech characteristics such as acoustic and spectral
content, pronunciation errors, formant frequencies, pitch variations, and
background noise and inconsistencies. The method is limited by scalability with
large numbers of audio files due to excessive training and manual feature
extraction which requires extensive labor to prepare the data.

DL detectors leverages features such as formant frequencies, pitch variations, and tone
nuances to identify discrepancies that distinguish a synthetic voice. The method
can use metadata and background noise patterns to differentiate between
authentic and synthetic voices and it requires specific transformations (e.g.,
audio features such as spectrograms) on the audio files when DL algorithms
were used.

See additional details about synthetic audio detection methods and datasets in the Appendix D.
Synthetic Audio Detection Performance

The performance of synthetic audio detectors varies depending on the specific detection methods, the
type of datasets, and the audio preprocessing techniques used.
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Performance measures for synthetic audio detection have been conducted based on three criteria,
equal error rate (EER), Tandem Decision Cost Function (t-DCF), and accuracy. EER is the point at where
the false positive rate and false negative rate are equal and t-DCF measures the reliability of decisions
made by the detectors. EER for audio ranges from 0.43% to 42.5%, with t-DCF from 0.008 to 0.39, and
accuracy from 50% to 99%. The methods employed to generate synthetic audio data can impact the
performance of the detection methods. For instance, one of the methods that has a very low error rate
compared to other methods when applied to TTS-based datasets, performs poorly when applied to
imitation-based datasets.

In general, ML-based detection methods provide better explanations and interpretations of the
detection results while DL-based detection methods such as Convolutional Neural Networks (CNN) are
considered more stable and consistent than the ML-based detection methods with respect to the
dataset and synthetic data type.

Additional Issues for Consideration

Non-English Language Coverage: Most current research is focused on developing detection methods for

identifying synthetic voices speaking in English. A detection model developed for a specific language
may not perform equally well for other languages or dialects, especially for languages or dialects that
have limited available data. Most detection methods focus solely on identifying synthetic audio, without
accounting for accents or dialects. A lack of language coverage for audio detection could increase
disparities in other parts of the world such as the Global South, especially around election periods, and
could result in the amplification of harmful audio deepfakes in non-English languages.

Detection in Real-World Scenarios: Due to the wide range of synthetic speech generation technologies,
it is still difficult to recognize some families of synthetic voice tracks in an open-set situation. The open-
set scenario refers to detecting a synthetic voice even if it was generated using a previously unseen
model.

Opportunities for Further Development for All Detection Techniques: Existing detectors primarily
emphasize discriminating between synthetic content and human-produced content. Intent
detection and characterization is a connected issue where there needs to be more research as the
detection and characterization of the intention behind manipulated or synthetic content can
greatly influence individual opinions or behaviors and widely affect the misinformation and
disinformation spaces. While the DARPA SemaFor program has made some progress in addressing
this challenge, there is still room for improvement in the widespread development and adoption of
semantic intent detection technologies. Further research should also include investigating how to
effectively improve detection performance on synthetic content that was post-processed or
corrupted by noise, transmission, compression, or reformatted by a different social media platform.
Specifically for audio detection, future research should also investigate what occurs if voice
recordings are corrupted by noise, coding, or transmission problems, as well as synthetic voice
recordings posted on social media sites or utilized live during phone calls. Lastly, more research is
likely needed to assess the effectiveness of human-assisted techniques to aid detection efforts,
such as in determining the effectiveness of human labels.
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4. Testing and Evaluating Provenance Data Tracking and Synthetic Content Detection Techniques

Measuring the effectiveness of provenance data tracking and synthetic content detection techniques
through testing and evaluation can identify issues with digital content transparency techniques.

A test is “an activity in which a system or component is executed under specified conditions, the results
are observed or recorded, and an evaluation is made of some aspect of the system or component.”

An evaluation is (1) “a systematic determination of the extent to which an entity meets its specified
criteria; (2) action that assesses the value of something.”

The testing and evaluation of digital transparency techniques described in this section focus on the
testing and evaluation of provenance data tracking and synthetic content detection techniques. It is
common practice to measure the loss in quality from system output accuracy of a system (using a loss
function) during training. Many loss functions and metrics for training overlap with metrics and models
for evaluation. While much of the testing and evaluation is automated, there is some testing that
involves human or manual examination of results, especially in contexts where subject matter expertise
is important. See Appendix E for more details.

4.1, Testing and Evaluating Provenance Data Tracking Techniques

4.1.1. Testing and Evaluating Digital Watermarking Techniques

Digital watermarks are typically tested by attacking and measuring their resilience. Different kinds of
attacks include removal attacks (i.e., removing the watermark without breaking the encryption or
security); distorting watermarks to fool a detector; cracking security measures to remove the
watermark, and forging watermarks.

Different ways to construct experiments and measure the robustness of watermarks include
experiments running a set of attacks and measuring the percentage of attacks that destroy watermarks
or percentage of the watermarks not detected. Another approach is to use image quality metrics to
compare the image similarities between and among an original unwatermarked image, a watermarked
image, and an attacked/changed watermark image. This experimental approach checks to see if the
images are similar after a benign change (such as a decompression) yet are dissimilar if the watermark is
attacked. Another experiment design uses image distance metrics to compare the distance or difference
between watermarked images to their benignly-changed images, similar to digital fingerprinting
experiments; a threshold distance is then set to identify which images are considered to be different.

Image similarity metrics more specific to watermarking include hiding capacity (HC), the number of bits
that can be hidden in an image; Peak Signal to Noise Ratio (PSNR); and Structural Similarity Index
Measure (SSIM), and generic image similarity metrics and image distance metrics (including the L_2
norm) are sometimes used. Another metric related to watermarking is the bits per pixel in an image,
which determines how much information can be embedded in the image as a tradeoff to security of the
watermark.

4.1.2. Testing and Evaluating Metadata Recording Techniques

One way to record metadata securely is through attaching it to a digital fingerprint of the digital
content; the digital fingerprint is commonly achieved via hashing, as described earlier. The concept is
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that different images should have different hashes (and not collide), yet two copies of the same image
should have the same hashes.

In addition, work is being conducted on the human testing and verification of metadata. One method is
for humans to check the provenance directly for accuracy, verifying a subset of the provenance data by
hand. Statistical tests on the provenance of the entire dataset used in training can complement human
verification. For example, a query can determine what fraction of each data sample has a particular
attribute. Provenance-generating software (or software that automatically generates metadata) can be
tested for functional correctness by verifying that certain automatically generated queries regarding the
provenance metadata return expected results. Provenance can also be evaluated by running
provenance generating models on a known use case and manually examining what is generated.

4.2. Testing and Evaluating Synthetic Content Detection Techniques

Testing and evaluating synthetic content detectors can help build trust in those systems. The most
common way to measure and evaluate a synthetic content detection system (or discriminator) is to
construct an evaluation dataset that has appropriately label human-generated (authentic) inputs (e.g.,
images, videos) and synthetic inputs. The detector is queried to detect which images are synthetic; in
this experiment, the detector will give a real number for each input indicating how likely the input is
synthetic, with a higher number indicating that the input is synthetic. Then, this output mirrors the
experiment discussed in Appendix E of this report and is scored on an accuracy metric. For detection
tasks, two particular metrics are the Area Under the Receiver Operator Curve (AUC) and the Detection
Error Tradeoff (DET) curve. This experiment design can be used to test all of the different types of
synthetic content detection techniques.

4.2.1. Testing and Evaluating Automated Content-Based Detection Techniques

Detection testing requires careful consideration of the training and evaluation data sets used in
designing the test. It is important to balance the types and relevance of authentic and synthetic content
to be tested, as well as the sources of inputs. Systems should be tested for their performance in
detecting images when they are resized and compressed. For images, the size of the images as well as
the size of the image regions tampered with are important considerations when evaluation data sets are
constructed.

When designing these detection test experiments, there are particular considerations as to how people
testing synthetic content detectors construct the training set and the evaluation set (the set of inputs
the detector is asked to determine which are authentic and which are synthetic). These concerns include
a balance of classes and a variety of different relevant situations that are context-dependent, so that the
dataset used is a balanced representation of the situation. As a result, evaluation datasets are often
custom-constructed for detection experiments, and multiple evaluation datasets may be used to
evaluate a detector. One consideration is testing detectors when the training and test sets are from the
same pool of inputs, and when the training and test sets are from different pools of inputs. Another
consideration is constructing data that tests image detectors to check that the detectors are robust to
images when they are post-processed such as resizing and compression. For images, the size of the
images as well as the size of the image regions tampered are an important consideration used when
making evaluation data sets.

For video content detectors have been tested in situations where the video had frames inserted,
deleted, or duplicated. For copy-paste detection (objects are copied and pasted within specific frames,

33


https://www.researchgate.net/publication/355769851_A_review_of_hashing_based_image_authentication_techniques
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.22683
https://www.cs.cmu.edu/~sherryw/assets/pubs/2023-data-provenance.pdf
https://dl.acm.org/doi/abs/10.1145/3564121.3564801
https://arxiv.org/abs/2002.11000
https://www.cambridge.org/core/books/evaluating-learning-algorithms/3CB22D16AB609D1770C24CA2CB5A11BF
https://www.sciencedirect.com/science/article/abs/pii/S0031320396001422
https://ccc.inaoep.mx/~villasen/bib/martin97det.pdf
https://ccc.inaoep.mx/~villasen/bib/martin97det.pdf
https://link.springer.com/chapter/10.1007/978-3-030-87664-7_9
https://doi.org/10.3390/ijgi9040254
https://ieeexplore.ieee.org/document/10007988?signout=success
https://ieeexplore.ieee.org/document/9141516
https://doi.org/10.1007/978-3-030-87664-7_9
https://doi.org/10.3390/ijgi9040254
https://doi.org/10.3390/ijgi9040254
https://doi.org/10.1007/s00530-017-0538-9

Uk, WN -

10

11
12
13
14
15

16
17
18

19

20
21
22
23
24
25
26

27
28
29
30
31
32

33

34
35
36
37
38

39
40

which are intra-frame forgeries), the accuracies of various detectors ranged from 54.9% to 99.3%
depending on the system and the complexity of the forgery. For detecting inter-frame forgeries with
insertions, duplications, and deletions of frames, the accuracies ranged from 57.9% to 99.3% depending
on the system, the number of frames inserted/deleted/duplicated, and the complexity of the forgery.
Another design involves constructing the evaluation dataset to have images produced from specific
attacks to fool the detector.

4.2.2. Testing and Evaluating Provenance Detection Techniques

Watermarking detectors can be tested in a fashion similar to testing post-hoc detectors: A watermark
detector is given watermarked images and non-watermarked images and is asked to detect the
watermarks. Here is an example of such an experiment testing watermarking detector.

Specific to watermarking detection, rather than using an accuracy metric, a different experiment can be
designed where the watermark detector is given a set of inputs and is asked to obtain the watermark.
The watermarked image obtained is then measured by its pixel correlation to the original watermark. In
another experiment where the watermarks are statistical, synthetic images are generated, and the bit
error rate of the watermark detector is measured and compared to theoretical optimums.

One way to evaluate metadata detection techniques is to take authentic media with authentic metadata
and then inject false metadata onto the media content. The metadata detector is then tested on
whether it can spot the false metadata.

4.2.3. Testing and Evaluating Human-Assisted Detection Techniques

Human-assisted detectors can be tested in a variety of ways; how the detector is tested depends on the
form of assistance. One kind of human-assisted detector is an automated detector that is assisted by
human-annotated training data. In this case, it is possible to compare the correctness accuracy of the
system trained on the human-annotated data to the system trained on the unannotated data. For
human-assisted text detection, one source augmented the training of large language models with
human-annotated descriptions of different text errors within LLM-generated text, though this was not
used to differentiate LLM-generated and authentic text.

Another kind of human-assisted detector is where the human is assisted with an automated model
(through a user interface), but the human makes the final decision. For these tasks, the evaluation
measures the human output. The human is measured by the time taken to complete the tasks and a
subjective difficulty rating. The different interfaces, models can be swapped with other models to
compare the influence of different machine assistance. This strategy is used to evaluate other human-
assisted software.

4.3. Additional Issues for Consideration

Scope: The variety of mainstream testing only tests for Validity & Reliability (accuracy), Safe, and Secure
& Resilient. As discussed in the NIST Al Risk Management Framework, there are additional trustworthy
characteristics including Fair - With Harmful Bias Managed, Privacy-Enhanced, Explainable &
Interpretable, and Accountable & Transparent. Many harms can arise when software is used but not
checked in these areas.

Context: These systems are tested in experiments that are sometimes isolated from context. For
instance, in what use cases is an AUC of 0.95 effective and in what use cases is this number bad? When
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will an improvement in AUC score actually reduce the harms of bias, discrimination, fairness, and other
issues? As the system’s output is rarely the final decision, there is an entire scenario and context
involving humans where inaccuracies of a system might have different impacts depending on how the
humans use the system output when making decisions. Lastly, as software is used by humans in
different contexts, the context and other non-technical concerns shape the impact of the accuracy of

the system, for example if a system’s outputs are used in high-risk use cases such as for employment, or

utilized in battlefield environments, high accuracy across different metrics may be more important.

Quality: A third concern comes from the testing of attacks and defenses. As many evaluations measure
the quality of techniques with an attack-and-defense style, there is a concern that the quality of
defenses is indirectly measured by the quality of attacks. Consequently, there have been instances
where defenses tested to be good by one series of attacks were broken by other attacks. As attacks get
better and adapt to current defenses, new defenses may then be developed as they adapt to these
newer attacks. This reflects the commonly-known cat and mouse game that can occur between
attackers and defenders, particularly in the realm of detection techniques. Defense-in-depth strategies
may be needed, where multiple approaches are applied depending on use case, with various security
mechanisms in place to reduce the unauthorized access of watermarks or metadata, for example.

Though some of these tests are being done, there is still a gap with the attacks that exist and the attacks

that mainstream tests often cover.

Opportunities for Further Development: More socio-technical research and evaluations to
understand how people interact with digital content transparency approaches across various types
of systems and in varied environments across the Internet will be helpful to design and implement
techniques effectively. There have been some initial studies done on how humans interpret
provenance labels attached to content and how labels may affect the perception of content, such
as research done on how disclosures that news media was Al-generated may affect perception of
trustworthiness (and reduce trust in news), and another study on how provenance-enabled media
is contingent on design choices, and how users may have difficulty in understanding provenance
labels on content. More studies would be helpful to understand how various content
authentication techniques can affect how people across various demographics interpret digital
content, current societal disparities that may affect the adoption of provenance data tracking
approaches, how provenance labels may affect (if at all) victims and survivors of synthetic CSAM
and NCII content, and much more. The evaluations space for digital content transparency
techniques in their application to synthetic content is relatively new, though applications of
cryptography, authentication, provenance, and labeling concepts have been applied across
different applications and use cases. A socio-technical perspective for evaluations, evaluating the
human-centered design of approaches and how these techniques are affecting people is valuable to
ensure that these techniques are being designed and implemented to improve digital content
transparency for all.
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5. Preventing and Reducing Harms from Synthetic Child Sexual Abuse Material and Non-Consensual
Intimate Imagery

N

Child sexual abuse material (CSAM) and non-consensual intimate images (NCII) are not new forms of
technology-facilitated abuse, but GAIl tools allow for novel, and direct ways to create this content at
scale causing new and growing harm to victims and survivors, both minors and adults—often with
relative ease, and requiring few technical skills. It has been documented that some Al models have been
trained on datasets containing confirmed, real CSAM. Various open-source tools developed by malicious
actors—such as face and body swap apps and websites to build image generation models commonly
trained on non-consensual intimate images—are expanding on the Internet and resulting in sextortion,
10 monetization schemes, and/or the targeting and abuse of women, girls, and minors (in addition to the
11  common use of NCII to stalk, harass, and humiliate victims, including by abusive partners). Editing tools,
12 in which authentic images can be uploaded and subsequently manipulated with Al, are another way in
13 which synthetic CSAM and NCII are proliferated online. The likenesses of political and public figures have
14 been manipulated and generated using Al tools to create non-consensual intimate imagery,

15  disproportionately targeting women and affecting the civic and political participation of women and the
16 health of democracies. Lastly, the misuse of generative Al tools increases victim identification, re-

17  victimization, and prevention issues for practitioners in this space. Victim identification is more difficult
18  with photorealistic synthetic CSAM being distributed at scale, the distribution of this content

19 exacerbates victim trauma, and prevention is difficult when known CSAM is in Al model training data.
20  Thisis a major socio-technical challenge, with implications for democracy and individuals’ safety.

O 00O NO UL B W

21 5.1. Current Technical Mitigations to Prevent and Reduce Harms from Synthetic CSAM and NCII

22 5.1.1. Training Data Filtering

23 As noted above, the ability of GAl models to generate CSAM or NCIl is made more likely by images

24 included in its training data which can result in harmful outputs as a result of human prompts.

25  Crowdsourcing data labeling often introduces biases and inaccuracies in human labels. Biases around
26 children could also affect dataset labels. For example, a study shows that most adults view Black girls
27  between the ages of 5-14 as more adult-like than their white peers. It is important to note that

28 removing CSAM from training data can be uniquely difficult as effectively filtering and removing all

29  harmful data from the training data is challenging when the data is scraped systematically from the

30 Internet, and also given that it is generally illegal for entities to possess CSAM, with a few exceptions
31  respective of the right legal protocols in place for reporting. Neither human review nor automated filters
32  or acombination of the two are effective enough to classify and capture all harmful and illegal content,
33 including known CSAM. One example is the LAION-5B dataset that was confirmed to contain CSAM and
34  was assembled from Common Crawl data, an open repository.

35 Filtering too little data allows the model to be trained on harmful content, but filtering too much could
36  affect the quality of the model’s outputs and reduce its sophistication or quality of outputs. Filtering
37  training data to prevent unsafe outputs and designing various safety classifiers to clean up datasets

38 before conducting model training can be useful.

39 Designing filters for training data could involve training ML-based classifiers using images of known and
40  vetted CSAM and NCII content (safety classifiers) and any other generally sexually explicit content,

41 testing this classifier on large datasets to determine precision and recall rates, and then using the

42 classifier to identify harmful content in training data, which could then be removed prior to model
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training. Deep-learning based classifiers could inform image and video classification tasks for detection
of sexually explicit images. For example, lightweight nudity detection techniques consisting of neural
nets for image classification are publicly available. Developers could also remove harmful or illegal
content from training data by filtering content from websites that are known to host CSAM and NCII.
Another method for reducing CSAM in training data is by training models only on vetted data, such as
licensed stock images and data in the public domain, given that all image data would be vetted for
licensing and/or exists in the U.S. public domain, though this may be costly for training and may not be
sufficient for training larger diffusion models.

5.1.1.1. Challenges and Limitations of Training Data Filtering

Key challenges and limitations of filtering training data include the subjective nature of safety labels,
resulting in ineffective filters and potential opportunity costs with the quality of model outputs.

Creating a safety filter can involve a human labeling process to classify different types of content as
violative and the type and severity of violation. For example, for the LAION-5B dataset, developers
attempted to remove sexually explicit and harmful content from the original training dataset, but the
safety filters used did not classify and capture all of the harmful or illegal content, including known
CSAM. It may be difficult to remove NCII from training data because consent — the defining feature of
NCIl—may not be evident or decipherable in the content itself.

Context matters when implementing a safety filter to remove harmful content from training data. When
crafting internal content policies to train safety classifiers, determining the severity of types of sexual
content can be challenging, especially if it is in a legal gray area. For example, an image of a toddler
wearing a bathing suit on a beach is generally quite harmless in training data, but it also means that the
model was trained on an image of a minor’s body, which can then enable the model to generate
harmful, illegal outputs such as synthetic CSAM using that data, given that generative Al models
generate outputs based on training data inputs. Labels can be used to improve and clean training data
but cannot fully translate context within a product. Inaccurate labels and even accurate labels taken out
of context could result in harmful model outputs.

There are also potential opportunity costs to consider when filtering or limiting training data. Filtering
out data more conservatively could improve the safety of a system but could also reduce its
functionality for benign use cases. For example, removing all images of individuals wearing revealing
clothing at beaches in order to exclude any images of women and children in bathing suits could result
in a model that is not capable of generating high quality images of people in beach settings Research
shows large-scale data filtering could have unexpected side effects on model performance and reduce
the quality of image generation across different tasks.

5.1.2. Input Data Filtering

Input data filtering can be applied at the prompt level for text-to-image models and is used in the
machine learning safety pipeline to prevent harmful generations. This form of moderation is conducted
after a training run for a GAI model and occurs at the product level, when users type in prompts to
generate images. Input data filtering can block malicious content that a user is intentionally attempting
to generate through violative or harmful prompts.

Input data filtering includes machine learning safety or moderation classifiers trained on text data.
These classifiers can be trained on a variety of different text prompts in order to classify different
categories of violative content. With respect to this section, text classifiers can be designed to detect
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sexual prompts of different severity. For example, this can include benign intimate activity such as two
people kissing, all the way to synthetic CSAM and NCII, which is of the highest severity. Several
companies provide moderation classifiers at the prompt level. Similar to the classifiers discussed for
training data filtering, these classifiers are also contingent on human data labels and internal content
policies to determine what types of content are violative and at what severity levels.

A second, more simplistic, type of input filter used by platforms and developers is a keywords filter, also
known as a keywords block list—an internally-managed database of violative keywords that prevents
the generation of images when a violative keyword is entered as an input prompt. This approach
identifies low-hanging fruit or known egregious content, such as commonly known CSAM terminology or
sexual terms. A keywords block list can be less sophisticated than safety classifiers and used more as a
blunt instrument. Nuance is difficult to achieve when the safety architecture operates in a binary; either
a prompt is blocked because it contains a violative keyword, or it is not blocked because it does not
contain violative keywords.

5.1.2.1. Challenges and Limitations of Input Data Filtering

There are a variety of challenges and limitations with input data filtering techniques, mainly related to
accuracy and robustness. Keyword filters on open-source image generation models can be bypassed
easily, and open-source models generally also have less technical restraints on the creation of harmful
content. Because text safety classifiers are contingent on both robust and nuanced human labels across
many types of content, and on gray-area content that even humans can disagree on, they may not
always be accurate in their classifications. Further, it is a socio-technical challenge to determine the
statistical confidence threshold at which certain types of content should be blocked. For example,
should a CSAM classifier block the generation of content at a lower confidence level, such as 60%, to
ensure that the false negative rate is lower? What kinds of benign content would be blocked if it were to
be set at that threshold? Similar to issues with training data filtering, context is important. On the other
hand, the effectiveness of keyword blocking can be limited on terms that have both harmful and benign
meanings, and could result in false positives. Malicious actors could also easily evade keyword blocks
and violate content moderation policies by adding different characters in between words, using trial and
error to find phrases that are not blocked, or utilizing visual synonyms to generate explicit imagery.

5.1.3. Image Output Filtering

Image output filtering is a method used to directly block the generation of an image based on any
violations or harms coming from the image output itself. Different output filtering techniques are used
by Al developers to help prevent harmful generations, although there is no publicly-available
information on how they are trained or the content that they block. Image output filters can also be
known as image classifiers. Image classifiers utilize labeled images that feed into a neural network,
which then conducts image classification and predicts a specific label or class depending on the original
labeled images. For example, an Al developer can create a training dataset with a variety of harmful
sexual images and detailed labels. This dataset can then be used to train a machine learning classifier to
help identify similar content at scale. Once the classifier has been tested and evaluated, it can be
included as a moderation mitigation within a product: When the classifier is triggered at a specific
confidence level indicating harmful content (e.g., 0.9 or above), then the generation can be blocked at
the user level.
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5.1.3.1. Challenges and Limitations of Image Output Filtering

Image output filtering challenges and limitations are similar to those of other methods that are applied
after training GAl models; they cannot entirely prevent harmful synthetic CSAM and NCII outputs if
training data contains this harmful content. The effectiveness of image output filters depends on their
training data and how well it covers a wide range of sexual content. Similar to other classifiers, these
classifiers could become conservative or far too lenient in blocking content, and it is a challenge to set
filter thresholds and confidence levels for content that exists in a gray area, can be subjective, or simply
may not be covered as violative within an organization’s internal policies. These classifiers can also be
informed by the real-world abuse of tools by malicious actors and in order to be effective, should be
constantly updated to reflect empirical abuse cases. This is another significant implementation
challenge, given that new forms of abuse may be difficult to detect if classifiers were not designed to
detect novel abuse content. Image output filtering may be more effective for content that contains clear
and evident nudity, given that nudity classifiers exist, but could be less helpful for unseen harmful sexual
depictions or content that exists in a gray area. Lastly, possessing a training data set with explicit content
could be arisk in and of itself for industry and academic researchers.

5.1.4. Hashing Confirmed Synthetic CSAM and NCII

Hashing confirmed synthetic CSAM and NClII after it has been created, and then appropriately sharing
these hashes with platforms, civil society, and law enforcement, as appropriate, can help track its
dissemination across the Internet and curtail further spread.

Cryptographic hashes make use of the “avalanche effect,” which states that even a slight alteration to
the input data would produce a vastly different cryptographic hash. When a single letter in a written
document or a single pixel in an image is altered, the new cryptographic hash will not resemble the
original one. For example, if a CSAM image is cryptographically-hashed, and that exact image is posted
on a social media platform that participates in the hash-sharing database containing the original image,
the platform should be able to identify the match.

Cryptographic hashing is currently used for service providers and platforms to prevent the redistribution
of synthetic CSAM and NCII content, in order to identify exact matches of egregious content. However, it
is not impervious to hacking and adversarial attacks.

Perceptual hash algorithms output similar hashes for comparable input files as seen by humans; the
hash value is contingent on the content and stays approximately the same if the content is not
significantly changed, such as if modifications are made to compression, brightness, orientation, or
color. The objective is to use the distance between and similarity of the perceptual hashes to
approximate the degree of similarity between input files. There is still a chance that perceptual hashes
will produce false positives and false negatives, meaning that different input files may have hashes that
are same or comparable, while similar input files may have hashes that are different.

Research shows that perceptual hashing can have greater benefits in multimedia formats given that it
produces hash matches based on similarity and tolerates differences in format and quality. For example,
if a confirmed synthetic CSAM image is edited with a color filter and posted on a platform, it would
retain the hash match to the original content.

If safety experts at Al companies are able to examine these forms of synthetic content and identify
images as CSAM and NCII, (though the classification of images itself may be a legal and policy challenge)
it could be hashed (both with cryptographic and perceptual hashes) and stored in shared databases for
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known CSAM and NCII for other entities to identify. This would enable the detection and mitigation of
the content across different platforms and websites. This solution may not prevent the harms of
synthetic CSAM and NCII but could reduce the impact and severity of these harms by stymying the
dissemination of this content and reducing further exposure of those depicted without their consent.

5.1.4.1. Challenges and Limitations of Hashing Confirmed Synthetic CSAM and NCII

There are coordination, policy, and technical challenges for hashing confirmed CSAM and NCII.

Coordination across organizations to share this content safely and effectively can be difficult. There are
established norms and laws about reporting CSAM, as well as established organizations that conduct this
work, such as the National Center on Missing and Exploited Children (NCMEC), which has also started to
hash reported synthetic CSAM. However, efforts for synthetic CSAM and NCII are still in early stages, and
can be better coordinated and standardized between Al developers, social media platforms, messaging
platforms, and other Internet providers in order to track the dissemination of this content and report it
to law enforcement effectively and proactively.

Policy challenges of understanding context also apply to hashing synthetic CSAM and NCII. The explicit
depiction of minors in images is a felony offense, and synthetic CSAM can represent a visual depiction of
sexually explicit conduct involving a minor, which has been facilitated using GAIl technologies. However,
there currently is no unified classification system for synthetic content to shed light on how an authentic
image may be modified by Al, if the image is completely synthetic, whether the image shows a minor,
and what kind of explicit conduct is shown in the image. Another key issue is determining whether an
image that is uploaded and modified by Al was NCIl or not. It is difficult to adjudicate consent for widely-
used GAI tools, unless the tool itself is malicious and trained on authentic images of people, and consent
is also difficult to discern on social media platforms. Consent may also be limited to particular contexts,
for example, there could be consent for the use of a person’s image to create a new GAIl image, but not
for distribution of that image. Further, even if these policy gray areas are standardized across industry
and civil society and clarified through regulations and legal action, vetting and hashing this content
would still have to be done at scale. At this point in time, human vetting is still a requirement for
accurate labeling, which also takes a toll on the mental health of reviewers vetting this content. These
policy considerations are vital to understand since labeling and assigning severity levels for hashed
content is not straightforward.

Lastly, it is important to note the technical limitations of hashing—both perceptual and cryptographic
and their vulnerabilities. Hashing can have robustness issues such as hash collisions, and though they
can be a helpful security measure, they can also be attacked and manipulated. Malicious modifications
of hashes, particularly perceptual hashes, are a concern since malicious modifications are possible
without distinguishing them from legitimate distortion. Bad actors could modify an image in a manner
that is not distinguishable from legitimate or benign distortions (such as compression), thus affecting the
integrity of tracking the original image. Perceptual hashing can allow significant data leakage. The same
properties that make the technique robust can allow inference of information about underlying content
from that content’s hash, introducing serious privacy risks.

Lastly, databases hosting hashes should be secured properly. Insufficiently secured hash-sharing
algorithms can allow for further exploitation, which could harm victims if hash-sharing databases
contain confirmed CSAM or other sensitive content.
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5.1.5. Provenance Data Tracking Techniques for Synthetic CSAM and NCII

Provenance data tracking techniques for synthetic content, such as digital watermarks and metadata
recording, could be used to reduce synthetic CSAM and NCII harms. They could dissuade malicious
actors from using tools that disclose all synthetic content, including synthetic CSAM and NCII as Al-
generated.

Malicious actors who create synthetic CSAM and NCIl might find tools less appealing for exploitation if
those tools include provenance information about the origin of an image, or a watermark that shows an
image is Al-generated, which can quickly assist in debunking any claims that synthetic CSAM and NCII
images are authentic. Most malicious actors generating this content on the Internet utilize open-source
tools or can even build their own smaller models based on existing open-source code, given that they
can easily remove safeguards. Implementing provenance data tracking approaches that utilize robust
watermarks and/or embed cryptographically-signed and secure metadata could add barriers for
malicious actors looking to quickly spin up and even monetize synthetic CSAM and NCII. This method
may reduce how much synthetic CSAM and NClI is created using tools that include provenance data
tracking techniques, though there needs to be more research to support this assertion.

Directly designating synthetic CSAM and NCII as Al-generated through provenance labels can allow for
the streamlined identification of this content by practitioners tracking these harms. The benefit of
streamlined identification would likely apply when content is generated and disseminated by less
sophisticated actors, who do not strategically use tools without provenance data tracking techniques, or
actors who are not aware of methods to remove watermarks or metadata. Harmful content created by
GAl tools that use provenance data tracking techniques—such as digital watermarking and metadata
recording—could be identified more easily in an interoperable ecosystem, when various content
providers and platforms are able to detect watermarks and/or preserve metadata.

5.1.5.1. Challenges and Limitations of Provenance Data Tracking Techniques for Synthetic CSAM and
NCII

The challenges and limitations of provenance data tracking techniques for synthetic CSAM and NCI|
include uncertainties about efficacy, robustness issues, and potential for adversarial abuse.

There is a lack of research and evidence about whether and how provenance labels are effective in
reducing harms from synthetic CSAM and NCII. Survivors and victims whose images are altered without
their consent through Al experience, harm, humiliation, and degradation regardless of whether the
content has overt labels and metadata attached to it.

Robustness issues with provenance data tracking techniques are also a concern. As mentioned in
previous sections, even the most robust frameworks for metadata recording and digital watermarks can
be vulnerable to manipulation and modification. Covert and overt watermarks can be removed from
digital content, and embedded metadata could be stripped. All of the provenance issues discussed in
this report apply to its use for synthetic CSAM and NCII. Given the level of sensitivity and harm with this
type of content, robustness can affect the identification of this content at scale by practitioners, as well
as victims of these harms.

Lastly, issues of robustness can create avenues for the adversarial abuse of provenance data tracking.
Initial research shows how malicious actors can remove watermarks and metadata from synthetic CSAM
and NCII. If so, they could undermine the benefits of labels on this content. Furthermore, the section on
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embedded metadata shows how adversarial attacks can be conducted on metadata that is both
unsigned and signed; cryptography does not guarantee complete defense against adversarial attacks.

5.1.6. Red-Teaming and Testing for CSAM and NCII

Red-teaming and testing for synthetic CSAM and NCII prior to the deployment of GAl models could
provide further safeguards. As defined in EO 14110 on Safe, Secure, and Trustworthy Development and
Use of Artificial Intelligence, red-teaming refers to a “structured testing effort to find flaws and
vulnerabilities in an Al system, often in a controlled environment and in collaboration with developers of
Al.” Red-teaming is a narrow type of evaluation method. Currently, standardized red-teaming for GAI
models does not exist, as the space is emergent. However, a baseline level of red-teaming—like
inputting various types of adversarial prompts to generate synthetic CSAM and NCll—could be used. By
scoping the Internet and internal systems for known prompts used to generate or attempt to generate
synthetic CSAM and NClII, developers of Al models can develop initial assessments of a model’s
propensity toward generating this content. An established and uniform red-teaming protocol or
guidelines for synthetic CSAM and NCII could assist with the future measurement of this content.

5.1.6.1. Challenges and Limitations of Red-Teaming and Testing for CSAM and NCII

Red-teaming and testing cannot effectively make up for issues in training data. These methods are also
contingent on how testing is conducted, and therefore are biased toward testing for known
vulnerabilities in an Al system. As mentioned throughout this section, training datasets without CSAM
and NCII data can help reduce the generation of this content. Additional safeguards applied after the
initial training run may not prove to be sufficient if the data itself is polluted. Lastly, by probing the
model with prompts that are already established as harmful and/or capable of creating synthetic CSAM
or NCII, a developer may not have coverage of new adversarial prompts that could bypass model
safeguards.

Opportunities for Further Development: More research and development is needed for designing
effective red-teaming strategies to catch synthetic CSAM and NCII outputs, determining the
effectiveness of provenance data tracking techniques on this content in reducing harm, designing
classifiers and filters to remove CSAM and NCII from training data as well as at the input and output
model levels, and developing coordination between civil society, industry, law enforcement, and
other relevant entities to hash synthetic CSAM and NCII. Further research is also needed to
examine the viability of privacy-preserving perceptual hashing.

42


https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://datasociety.net/wp-content/uploads/2023/10/Recommendations-for-Using-Red-Teaming-for-AI-Accountability-PolicyBrief.pdf#:~:text=Red-teaming%20works%20well%20to%20evaluate%20specific%20vulnerabilities%20in,mitigate%20the%20real-world%20harms%20of%20AI%20system%20deployment.

NoO b wN

10
11
12
13
14

15
16
17
18
19
20
21
22
23

24
25

6. Application of Concepts to the NIST Al Risk Management Framework Lifecycle

The NIST Al Risk Management Framework (NIST Al RMF) states, “measuring risk at an earlier stage in the
Al lifecycle may yield different results than measuring risk at a later stage; some risks may be latent at a
given point in time and may increase as Al systems adapt and evolve.” Different Al actors (both actors
who are building and/or utilizing Al models) will often have different risk perspectives and may find
certain provenance data tracking or synthetic content detection techniques more useful contingent on
use case, product, and organizational goals.
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Figure 2. Al actors across Al lifecycle stages. From NIST Al 100-1 Al RMF 1.0

Data & Input: Collect and Process Data: The responsible collection and filtering of training data could
help reduce and/or prevent the harms of synthetic CSAM and NCIl outputs in this phase. Provenance
data tracking techniques such as watermarking and metadata could be added to training data to
preserve the provenance of datasets used in training. In this phase, data and input needed to design
detection models to classify synthetic content can also be collected.

Al Model: Build and Use Model, Verify and Validate: During the build and use, and verify and validate
phases, provenance data tracking techniques such as metadata or watermarks can be proactively added
to model outputs at the time of generation. To apply these provenance approaches securely, they can
be cryptographically verified and authenticated in their application, through the use of a digital
signature, or other types of hash functions. Also, the final model can be protected by watermarking the
model weights or parameters. The effectiveness of provenance data tracking techniques, such as
accuracy in detecting watermarks, or correctly identifying manipulated and synthetic content, prior to
deployment needs to be verified. Mitigation mechanisms that prevent the creation of synthetic CSAM
and NCII (as discussed in previous sections) may be proactively applied during the model building phase.

Task and Output: Deploy and Use: Establishing mechanisms for collecting a diverse set of user
feedback—especially in cases of false positives (e.g., disclosing a content as Al-generated while it is
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actually human generated) or negatives (e.g., missing a disclosure of Al-generated content)—supports
content authentication and synthetic content detection efforts. The measurements and metrics used are
highly dependent on the use case, context, systems being tested, and the application.

Application Context: Operate and Monitor: The broader impact of digital content transparency
approaches may be examined during the operate and monitor phase of the Al lifecycle in light of
objectives, legal and regulatory requirements, and ethical considerations.

People and Planet: Use or Impacted By: By sharing the results from TEVV conducted across the Al
lifecycle with various representative actors such as Al developers, civil society entities, and end users,
effective mitigations to potential harms can be explored. A focus on digital rights for all and safety-by-
design remains important in this last phase, and closing gaps where groups may be denied access to
their digital human rights to digital content transparency, through factors such as a lack of Internet

12 access, or information literacy resources to understand labels on content, or as a result of the malign or
13 unintended use of provenance data tracking techniques to negatively impact user privacy should be

14  considered for Al actors across the content lifecycle.

OoOoON OuUulh WN PR

e
= O

Digital content transparency approaches, parsed by the NIST Al RMF lifecycle

Data & Al Al Application People &
g Input Model Model Context Planet
£
e Collect and Build and use Verify and Operate and Use or
£3 process data model validate monitor impacted by
z TEVV includes TEW includes TEW includes T_EW incl_udes TEW includes TEWincludes
g internal & external model testing madel testing integration, audit & impact audit & impact
validation compliance testing, assessment assessment
& evaluation
Responsible Proactively add embedded metadata, Establish Conduct TEWV of Use results from
collection and watermarks (both visible and invisible), mechanisms for provenance data TEW FO explore
filtering of and/or labels to generated outputs. collecting a tracking and E‘Ffelﬁtl\'_ﬁ‘
training data. diverselsetof synthetic mltlgatlo_nf, to
Cryptographically verify and authenticate user feedback, content harms arising
2 Add watermarks these approaches through the use of digital especially in detection from_thé_
z and metadata to signatures and other hash functions. cases of false approaches. ap:_nln:atlon of
T training data. TTeE T digital content
Protect the final model by using negatives. Examine the transparency
Start collecting watermarking methods on the trained intended and approaches.
and preparing parameters. Collect specific unintended .
data needed for measurements impacts of Cc_m'swder and
detection Develop validation metrics that can and metrics utilizing these mitigate
models. measure the effectiveness of content when the model techniques. !-Inmtended
authentication techniques. Sl impacts on the
digital human
Apply technical mitigations to prevent the Update the rights of users.
creation of synthetic CSAM and NCII. model’s current
content
authentication
techniques
based on
feedback.
16 Figure 3. Digital content transparency approaches, across the Al lifecycle described in NIST Al RMF
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7. Conclusion

This report is intended to enhance understanding of technical approaches to synthetic content and
digital content transparency as a key step in reducing related risks. It focuses on and provides an
overview of technical approaches to digital content transparency, which is key to achieving the goal of
reducing Al risks involving synthetic image, text, audio, and video content. This report provides specific
information about synthetic content related to child sexual abuse material (CSAM) and non-consensual
intimate images (NCIll) and describes techniques being used or considered to prevent and reduce related
harms.

This report describes technical approaches that are being used and offered commercially or are
available today as well as those that are being explored. After explaining the advantages and issues with
each technique, this document highlights selected opportunities for further development.

Each of the approaches described in this report holds the promise of helping to improve trust by clearly
and readily indicating where Al techniques have been used to generate or modify digital content. Yet
each has important limitations that are both technical and social in nature. It is vital to note that none of
these techniques can be considered as comprehensive solutions; the value of any given technique is use-
case and context specific. In order for digital content transparency to succeed, the application of
provenance data tracking and synthetic content detection approaches must occur in tandem with
various social efforts and initiatives to affirm content authenticity.

Collaboration and coordination across the content value chain—and consideration of social factors—are
needed to ensure adoption of effective digital content transparency approaches. That includes the need
for science-backed standards forged through global actions; this report cites several of those initiatives
for particular techniques aimed at fostering digital content transparency.

While there is no silver bullet to solve the issue of public trust in and safety concerns posed by digital
content, the consideration of the various approaches for provenance data tracking and synthetic
content detection across different modalities of content is important, and research on these approaches
can be developed further. This report is a resource to promote understanding and help to lay the
groundwork for the development of additional, improved technical approaches to advancing synthetic
content provenance, detection, labeling, and authentication.
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https://arxiv.org/pdf/2306.08571

Appendix A. Current Standards

A.1. Synthetic Content Standards and Guidelines

There are various hardware, software, and risk management standards for Al systems that are pertinent
to authentication of synthetic content. The table below provides a non-exhaustive list.

Standard

ISO/IEC 38505-
1:2017

ISO/IEC
23894:2023

ISO/IEC
JTC1/SC29

IPTC
Photo Metadata

standard

ISO/IEC
2022:2021

ISO/IEC/IEEE
29119

Domain

Governance of
data

Al risk
management

Audio, picture,
multimedia, and
hypermedia

Photos

Information
security
management
systems

Software testing

Purpose

Evaluating, directing, and
monitoring the handling and use of
data in organizations.

Integrating risk management into
Al-related activities and functions.

Coding of digital information such as
multimedia, environment, and user-
related metadata, media security,
privacy management, source
authentication, and integrity
verification.

Defining metadata structure,
properties, and fields so that images
are optimally described and easily
accessed later.

Measuring a software product based
on internal security, reliability,
performance efficiency, and
maintainability.

Testing across the Al lifecycle and
for black box systems, which are
directly useful in the context of GAI
systems.
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Organization(s)

International
Organization for
Standardization
(ISO) and the
International
Electrotechnical
Commission (IEC)

ISO and IEC

ISO and IEC

International Press
Telecommunication
s Council (IPTC)

ISO and IEC

ISO, IEC, and the
Institute of
Electrical and
Electronics
Engineers (IEEE)


https://www.iso.org/obp/ui/#iso:std:iso-iec:38505:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:38505:-1:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:23894:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:23894:ed-1:v1:en
https://www.iso.org/committee/45316.html
https://www.iso.org/committee/45316.html
https://iptc.org/standards/photo-metadata/#:~:text=The%20IPTC%20Photo%20Metadata%20standard,described%20and%20easily%20accessed%20later.
https://iptc.org/standards/photo-metadata/#:~:text=The%20IPTC%20Photo%20Metadata%20standard,described%20and%20easily%20accessed%20later.
https://iptc.org/standards/photo-metadata/#:~:text=The%20IPTC%20Photo%20Metadata%20standard,described%20and%20easily%20accessed%20later.
https://www.iso.org/standard/27001
https://www.iso.org/standard/27001
https://www.iso.org/standard/81291.html
https://www.iso.org/standard/81291.html

ISO/IEC
22989:2022

ISO/IEC
42001:2023

ISO/IEC
TR 24027:2021

ISO/IEC
1S54213:2022

SMPTE 2112-10

ATSCA/334

ATSCA/335

Al concepts and
terminology

Al-Management
system

Bias in Al systems
and Al-aided
decision making

Assessment of
machine learning
classification
performance

Open Binding of
Content

Identifiers
standard

Audio
Watermarking

Video
Watermarking

Establishing terminology for Al and
describing concepts in the field of
Al.

Specifying requirements for
establishing, implementing,
maintaining, and continually
improving an Artificial Intelligence
Management System (AIMS) within
organizations.

Describing measurement
techniques and methods for
assessing bias, with the aim to
address and treat bias-related
vulnerabilities.

Specifying methodologies for
measuring classification
performance of machine learning
models, systems, and algorithms.

Describes a method of binding
content identifiers to media,
utilizing audio watermarking,
allowing the content to be identified
both electronically and acoustically

Specifies the VP1 audio watermark
for use with systems conforming to
the ATSC 3.0 family of specifications
and the format in which the audio
watermark resides in a PCM audio
signal

Describes a video watermarking
technology to robustly embed
ancillary data in the transmitted
pixels of a video signal
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ISO and IEC

ISO and IEC

ISO and IEC

ISO and IEC

Society of Motion
Picture and
Television
Engineers (SMPTE)
Technology
Committee on

Television and
Broadband (24TB)

Advanced
Television Systems
Committee (ATSC)

Advanced
Television Systems
Committee (ATSC)


https://www.iso.org/standard/74296.html
https://www.iso.org/standard/74296.html
https://www.iso.org/standard/81230.html
https://www.iso.org/standard/81230.html
https://www.iso.org/standard/77607.html
https://www.iso.org/standard/77607.html
https://www.iso.org/standard/79799.html
https://www.iso.org/standard/79799.html
https://ieeexplore.ieee.org/document/9264808/media#media
https://www.atsc.org/atsc-documents/a3342016-audio-watermark-emission/
https://www.atsc.org/atsc-documents/a3352016-video-watermark-emission/
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A.2. Selected NIST Practices and Guidelines

NIST’s past work in the realms of Al, privacy, and cybersecurity is useful with regard to authentication of
synthetic content. Selected guidelines are noted below.

Framework

NIST Al Risk Management
Framework

NIST Al RMF Playbook

Al RMF Core

Security and Privacy Controls
for Information Systems and

Organizations

Digital Identity Guidelines

and

2022 Initial Public Draft (IPD)
for Digital Identity Guidelines

Privacy Framework

A.3. Metadata Standards

Description

Foundation for what organizations should do to manage risk for Al
systems.

Foundation for how to implement the NIST Al RMF.

Outcomes and actions that enable dialogue, understanding, and
activities to manage Al risks and responsibly develop trustworthy Al
systems.

A catalog of security and privacy controls for information systems and
organizations to protect organizational operations and assets,
individuals, other organizations, and the Nation from a diverse set of
threats and risks.

Technical requirements for federal agencies implementing digital
identity services. The 2022 Initial Public Draft (IPD) for Digital Identity
Guidelines enhances fraud prevention measures from previous
versions.

A tool for improving privacy through enterprise risk management.

EXIF (Exchangeable Image File Format) Metadata: A standard that specifies the formats for images,
sound, and ancillary tags used by digital cameras (including smartphones), scanners, and other systems.
EXIF data includes details about the camera model used, shutter speed, the creation date, and location

information.

IPTC (International Press Telecommunications Council) Metadata: A standard for exchanging metadata
in images, particularly those used in journalism. It includes fields for information such as captions,
keywords, location, and copyright.

XMP (Extensible Metadata Platform) Metadata: An ISO standard, originally created by Adobe Systems
Inc., for the creation, processing, and interchange of standardized and custom metadata for digital

documents (e.g., images, videos, PDFs).

ANSI/NISO Z39.87-2006 (R2017) Data Dictionary - Technical Metadata for Digital Still Images: Defines a
set of metadata elements for raster digital images to enable users to develop, exchange, and interpret
digital image files. The dictionary has been designed to facilitate interoperability between systems,
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https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://airc.nist.gov/AI_RMF_Knowledge_Base/Playbook
https://airc.nist.gov/AI_RMF_Knowledge_Base/Playbook
https://airc.nist.gov/AI_RMF_Knowledge_Base/AI_RMF/Core_And_Profiles/5-sec-core
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-4.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-4.ipd.pdf
https://www.nist.gov/system/files/documents/2020/01/16/NIST%20Privacy%20Framework_V1.0.pdf
https://exifinfo.org/
https://www.iptc.org/std/photometadata/0.0/documentation/IPTC-PhotoMetadataWhitePaper2007_11.pdf
https://www.iptc.org/std/photometadata/0.0/documentation/IPTC-PhotoMetadataWhitePaper2007_11.pdf
https://en.wikipedia.org/wiki/List_of_International_Organization_for_Standardization_standards
https://en.wikipedia.org/wiki/ADBE
https://en.wikipedia.org/wiki/ADBE
https://www.iso.org/standard/75163.html
https://en.wikipedia.org/wiki/Metadata
https://www.niso.org/publications/ansiniso-z3987-2006-r2017-data-dictionary-technical-metadata-digital-still-images
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services, and software, as well as to support the long-term management of and continuing access to
digital image collections.

textMD: An XML Schema that details technical metadata for text-based digital objects. It most
commonly serves as an extension schema used within the Metadata Encoding and Transmission Schema
(METS) administrative metadata section. However, it could also exist as a standalone document. While
textMD is attached to text files, individual document pages may additionally be defined as distinct
objects with their own metadata.

ISO/IEC 11179 Metadata Registry (MDR): A standard for the management of metadata registries,
designed to ensure interoperability across different systems.

Dublin Core Metadata Initiative (DCMI): One of the most-used digital metadata standards. A
straightforward and adaptable set of metadata elements is offered by the DCMI, which can be utilized to
characterize different kinds of digital resources. Titles, creators, subjects, descriptions, dates, formats,
and identifiers are among the essential elements it provides. These components offer a basis for
interoperability amongst various metadata systems and can be used to construct informative metadata.

Metadata Object Description Schema (MODS): An XML-based metadata system created by the Library
of Congress. It offers specific elements for various content types, including music, photos, videos,
documents, and maps, enabling a more detailed description of resources. Furthermore, it facilitates the
encoding of intricate relationships among resources, making it possible to depict collections, series, or
hierarchical organizations.

The Metadata Encoding and Transmission Standard (METS): A standard expressed in XML for encoding
descriptive, administrative, and structural metadata regarding objects within a digital library that
provides the means to convey the metadata necessary for both the management of digital objects
within a repository and the exchange of such objects between repositories (or between repositories and
their users).
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https://www.loc.gov/standards/textMD/
https://www.loc.gov/standards/mets/
https://www.loc.gov/standards/mets/METSOverview.v2.html#admMD
https://www.iso.org/standard/78914.html
https://www.iso.org/standard/78914.html
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.loc.gov/standards/mods/
https://www.loc.gov/standards/mets/mets-home.html
https://www.loc.gov/standards/mets/mets-home.html

1 Appendix B. Technical Tools

2 Selected technical tools related to digital content transparency.

Tool Name Domain Modality Description
Google Deepmind SynthID Watermarking and Image Tool for watermarking and
identification Audio identifying Al-generated
content
C2PA Tool Content Image Open-source tools for
authentication . content authenticity and
Video
provenance
Audio
Documents
HIVE Classification APIs Detection Images Identify Al-generated or
Text modified images and text
AISEO Detection Text Identify human text and Al-
generated text
Photoguard Deepfakes Image Prevents unauthorized
image manipulation
Sensity Deepfakes Image Detect Deepfake images
Video and videos
GPTzero Detection Text Detect Al-generated text
Turnitin Detection Text Detect Al-generated text;
specialized for student
writing
RADAR Detection Text A framework for Al-
generated text
Resemble Al Detection Audio Detect Al-generated audio

and deepfakes


https://deepmind.google/technologies/synthid/
https://opensource.contentauthenticity.org/
https://thehive.ai/apis/ai-generated-content-classification
https://aiseo.ai/AI-tools/ai-content-detection.html
https://github.com/MadryLab/photoguard
https://sensity.ai/deepfake-detection/
https://gptzero.me/
https://www.turnitin.com/
https://radar.vizhub.ai/
https://www.resemble.ai/

Tool Name

Truepic Lens

Serelay

Attestiv

Copyleaks

Azure Al Content Safety

Reality Defender

Verify

FakeNet Al

PhotoDNA

CSAl Match

Domain

Content
Authentication

Content
Authentication

Blockchain-based
authentication

Detection

Content Moderation

Deepfakes

Authentication

Deepfakes

CSAM

CSAM
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Modality

Image

Video

Image

Video

Image
Video

Documents

Text

Source Code

Text

Image

Text

Image
Video
Audio

Image
Video
Audio

Video

Image

Video

Video

Description

Mobile camera SDK
powered with C2PA
standard

Verify authenticity of
captured images/videos

Media validation and fraud
detection

Detect Al-generated
content including source
code plagiarism

Detects harmful user-
generated and Al-generated
content in applications and
services

Detect deepfakes and
generative content

Inspect and verifies the
content credentials of a
digital content

Detects synthetic media

Detects CSAM content

Detects CSAM videos


https://truepic.com/truepic-lens/
https://www.serelay.com/our-products/console-api-sdk/
https://attestiv.com/
https://copyleaks.com/
https://ai.azure.com/explore/contentsafety
https://realitydefender.com/
https://contentcredentials.org/verify
https://www.fakenetai.com/
https://www.microsoft.com/en-us/photodna
https://www.youtube.com/csai-match

Tool Name

NeuralHash

PDQ
TMK+PDQF

eGLYPH

TinEye

Google reverse image

search

Steg.Al

SAFE

Imatag

Domain

CSAM

CSAM

Harmful Content

Harmful Content

Retrieval

Retrieval

Watermarking

Watermarking

Watermarking

Watermarking
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Modality

Image

Image

Video

Audio
Image

Video

Image

Video

Image

Image

Image
Video

Documents

Digital assets

Internet of
Things (10T)

Image

Video

Description

Detects CSAM on client
devices

Detects CSAM content

Alerting system to social
media platforms

Shared hashing database to
identify terrorism materials

Search and retrieves
perceptual similar images
including image source

Search and retrieves
perceptual similar images
including image source

Secures and authenticate
digital assets using forensic
watermarks

digital watermark
embedding and detection
tool for digital assets

a novel zero-watermarking
approach to establish end-
to-end data trustworthiness
in an loT network

Digital watermarking to
embed secure and robust
invisible watermarks during


https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://about.fb.com/news/2019/08/open-source-photo-video-matching/
https://raw.githubusercontent.com/facebook/ThreatExchange/main/hashing/hashing.pdf
https://raw.githubusercontent.com/facebook/ThreatExchange/main/hashing/hashing.pdf
https://www.counterextremism.com/video/how-ceps-eglyph-technology-works
https://gifct.org/
http://tineye.com/
http://images.google.com/
http://images.google.com/
https://steg.ai/
https://www.digimarc.com/press-releases/2024/01/04/digimarc-offers-free-digital-watermark-embedding-and-detection-tools#:~:text=SAFE%E2%84%A2%20digital%20watermarks%20can%20communicate%20content%20provenance%2C%20authenticity%2C,internet%2C%20digital%20watermarks%20must%20have%20five%20specific%20characteristics.
https://arxiv.org/abs/2305.00266
https://www.imatag.com/

Tool Name

WinstonAl

ZeroGPT

Domain

Detection

Detection
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Modality

Text

Text

Description

the image generation
process

Al content detection tool
for text generated by LLMs

Al content detection tool
for text generated by LLMs


https://gowinston.ai/
https://www.zerogpt.com/
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Appendix C. Provenance Data Tracking

C.1. Example Digital Watermark Use Cases

Steganography: Watermarking can be used to conceal or hide a message (text, file, image, or video) into
another piece of digital content by altering textual information, altering the pixel values in an image, or
inserting discrete sounds in an audio file that are covert to human (visual or auditory) detection.

Invisible forensic watermarking: Dataset watermarking, model watermarking, and steganography can
be combined to secure digital assets such as tracing back content to specific models.

Copyright protection: Watermarking has been used to protect digital media content, such as images,
audio, and video, from unauthorized use or distribution by embedding ownership or copyright
information. This may discourage piracy and unauthorized distribution, either because the content can
be detected as belonging to someone else or because an overt watermark renders the content
unusable. Watermarks have also been applied by global news organizations to track and monitor the
distribution of digital media content across channels or platforms, with the goal of fighting copyright
infringement.

Content authentication: Watermarking can affirm the authenticity of the origin and integrity of digital
content, while minimizing the chances that the content has not been tampered with or altered.

C.2. Watermarking Applications Prior to Content Creation

The application of watermarks can span from datasets and trained models till digital content generation.
For example, here are some types and categories being applied:

Dataset watermarking is a technique that embeds a unique identifier that traces the
provenance of a dataset and acts as proof of ownership of digital
content.

Model watermarking is a technique that embeds a unique identifier in a model and acts as

proof of ownership of digital content while preventing unauthorized
uses and distribution.

Differential watermarking is a technique that embeds a unique identifier between two data points
(pixel values or features of a data table/tabular dataset).

C.3. Current Provenance-Related Initiatives

Framework Description Techniques Discussed Type
Coalition for The C2PA framework is Metadata embedding Framework
Content an interoperable - .

o Digital signatures
Provenance and specification that
Authenticity “enables the authors of ~ Watermark (with Content
(C2PA) provenance data to Credential feature)
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https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html

The Starling
Framework for

Data Integrity

The Numbers
Protocol

Interoperable
Digital Media
Indexing

Partnership on
Al’s Responsible

Practices for
Synthetic Media

securely bind statements
of provenance data to
instances of content
using their unique
credentials”

A set of tools and
principles utilizing Web3
technology in order to
store, capture, and verify
content. The framework
has also utilized the C2Pa
specification.

“Numbers Protocol is the
Decentralized
Provenance Standard. It
secures digital media
provenance through a
decentralized ecosystem
and blockchain
technology.” It utilizes
existing standards such
as the IPTC and C2PA
framework as well.

A method to record,
discover and retrieve
digital media on
Ethereum Virtual
Machine-compatible
blockchains.

Responsible practices
and recommendations
regarding synthetic
media for three
stakeholders: builders,
creators, and distributors
/ publishers. Core
concepts are consent,
disclosure, and
transparency.

- Blockchain/Web3
- Digital fingerprinting
- Embedded metadata

- Blockchain/Web3
- Digital fingerprinting
- Embedded metadata

- Blockchain

- Digital fingerprinting

- Watermarking

- Embedded metadata
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Framework

Framework

Method

Best Practices


https://www.starlinglab.org/image-authentication/
https://www.starlinglab.org/image-authentication/
https://www.starlinglab.org/image-authentication/
https://docs.numbersprotocol.io/introduction/numbers-protocol
https://docs.numbersprotocol.io/introduction/numbers-protocol
https://eips.ethereum.org/EIPS/eip-7053
https://eips.ethereum.org/EIPS/eip-7053
https://eips.ethereum.org/EIPS/eip-7053
https://syntheticmedia.partnershiponai.org/
https://syntheticmedia.partnershiponai.org/
https://syntheticmedia.partnershiponai.org/
https://syntheticmedia.partnershiponai.org/

Swear
Framework

The patented framework - Blockchain

fingerprints and maps - Digital fingerprinting

digital media within a
Web3.0 blockchain
network. Every pixel and - Watermarking
soundbite are protected

and authenticated.

- Metadata
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Framework


https://swear.com/a/
https://swear.com/a/

Appendix D. Synthetic Content Detection

D.1. Synthetic Image Detection Datasets

The datasets below are popular detection datasets for synthetic images with the real-fake size which
categorizes image content as general, face, and art.

(Generator

Dataset Image Category) Public Real Images Fake Images
Content Availability

GAN Diffusion
UADFV Face v X X 241 252
FakeSpotter Face Vv X X 6,000 5,000
DFFD Face v X v 58,703 240,336
APFDD Face v X X 5,000 5,000
ForgeryNet Face Vv X v 1,438,201 1,457,861
DeepArt Art X Vv N4 64,479 73,411
CNNSpot General X N 362,000 362,000
IEEE VIP Cup General v X 7,000 7,000
DE-FAKE General  x N4 X 20,000 60,000
CiFAKE General x v Vv 60,000 60,000
Genlmage General v N4 1,331,167 1,350,000

Zhu et al., “Genlmage: A Million-Scale Benchmark for Detecting Al-Generated Image” Table 1,
https://arxiv.org/pdf/2306.08571

D.2. Synthetic Video Detection Datasets

There are various deepfake detection datasets used in numerous studies for training and testing
purposes. Deepfake detection datasets have enabled rapid advances in the field. However, there is a
limit to those datasets: Authentic videos in these datasets are filmed with volunteer actors in limited
scenes, while synthetic videos are created by researchers using a few deepfake tools available.
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https://arxiv.org/abs/2306.08571
https://arxiv.org/pdf/2306.08571
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9721302
https://arxiv.org/abs/2103.00484
https://www.mdpi.com/2313-433X/9/1/18

1  D.3. Synthetic Video (Deepfakes) Detection Methods and Results

2 The tables below summarize recent deepfake detection methods and their DL- and ML-based results.
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https://arxiv.org/pdf/2103.00484.pdf

2
3

Reference Focus Methods Models Features Datasets
Sharp_Multi_Instance_Learning [23] DMF ML MIL STC CELEB-DF, FF, DFDC, FF+
Conv_Traces_on_Images [24] DMF ML, STAT SVM, DA, KNN, STC CELEB-A, FF+
EM
Dynamic_Texture_Analysis [25] DMF ML SVM TEX FF++
Anomalous_Co-motion_Pattern [26] DMF ML, STAT ADB, CRA FL FF++
Unmasking_DeepFakes [29] FM ML SVM, LR, k-MN FDA CELEB-A, FF++, Other
Metric_Learning [32] FM DL, ML MTCNN, RNN, SA.FL CELEB-DF., FF+
MLP
Audio_Visual_Dissonance [35] FM DL CNN BA DFDC, DF-TIMIT
DeepRhythm [36] FM DL CNN, RNN BA, FL DFDC, FF++
DeepFakesON-Phys [38] DMF DL CNN BA DFDC, CELEB-DF
A_Note_on_Deeptake [41] FM DL CNN MES FF++
Conditional_Distribution_Modelling [45] FM DL CNN SA FF
Spatio-temporal_Features [48] FM DL CNN STC DFDC, FF++, DF-1.0
Time-Distributed_Approach [49] FM DL CNN, RNN TEX DFDC
Cost_Sensitive_Optimization [50] FM DL CNN, RNN TEX FF++, DE-TIMIT
Lips_Do_not_Lie [51] FM DL CNN, MSTCN BA DFDC, CELEB-DF, FS, FF++,
DF-1.0
3D_Decomposition [52] FM DL CNN TEX DFDC, FF++, DFD
Auxiliary_Supervision [53] FM DL CNN STC, TEX  FF, FF++
Forensics_and_Analysis [54] FM DL CNN BA, FL CELEB-DF, DF-TIMIT
Identity_Driven_DF_Detection [55] DMF DL CNN SA,FL CELEB-DF, DFD, FF++,
Other
Patch_Wise_Consistency [56] FM DL CNN FL, IFIC DFDC, CELEB-DF, DFD,
FF++, DF-1.0
Data_Augmentations [57] FM DL CNN IMG DFDC, CELEB-DF, DFD,
FF++
Super-resolution_Reconstruction [58] FM DL CNN SA FF++
MMD_Discriminative_Learning [59] FM DL CNN SA UADFV, CELEB-DF. DF-
TIMIT, FF++
On_the_Detection [61] FM DL CNN GAN FF++
Ensemble_of_CNNs [64] FM DL CNN SA, IFIC DFDC, FF++
DeepfakeStack [65] FM DL CNN SA CELEB-DF, FF++
Conv_LSTM_Residual_Net [69] M DL MTCNN, RNN FL FR++
Two-Branch_RNN [70] FM DL RNN FDA DFDC, CELEB-DF, FF++
Recurrent_Conv_Structures |71] DMF DL CNN, RNN STC CELEB-DF, FF+
Dynamic_Prototypes [76] FM DL CNN SA DFDC, FF+
Face_X-ray [79] FM DL CNN FL DFD, CELEB-DF, DFDC,
FF++
Manipulated_Face_Detector [80] FM DL CNN FL FF, CELEB-A, FF++
Subjective_Assessment [82] FM DL CNN SA Other
Adaptive_Residuals_Extract_Net [83] DMF DL CNN SA CELEB-A, FF++
Automatic_Face_Weighting [84] FM DL CNN, RNN STC, VA DFDC
Real_or_Fake [86] FM DL CNN TEX Other
Watch_Your_Up-Convolution [87] FM DL, ML CNN, MLP GAN CELEB-A, FF++
Visual_Artifacts_and_MLP [88] FM ML MLP FL, VA UADF, DFD
Easy_to_Spot_for_Now [90] DMF DL CNN GAN CELEB-A, FS, FF++, Other
Adversarial_Perturbations [92] DMF DL CNN GAN CELEB-A
Cluster_Embed_Regularization [93] FM DL CNN VA UADF, DFD, DF-TIMIT
Face_Preprocessing_Approach [94], [95]  FM DL CNN IMG, VA CELEB-DF, DFDC, FF+
Patch_and_Pair_CNN [96] FM DL CNN IFIC FF, DF-TIMIT, Other
Efficient-Frequency [97] Both DL CNN FDA DFDC, UADFYV, DFW,
CELEB-DF, DF-TIMIT, FF++
ID-Reveal [98] FM DL CNN VA CELEB-DF, DFD, FF++
Counterfeit_Feature_Extraction [99] DMF DL CNN VA Other
Emotions_Do_not_Lie [100] FM DL CNN FL DFDC, DE-TIMIT
Face_Context_Discrepancies [101] FM DL CNN STC, VA CELEB-DF, DFDC, FF+
Deep_Detection [102] FM DL CNN CPRNU UADFV, CELEB-DF, FF++
What_Makes_Fake_Images [103] FM DL CNN IMG, VA CELEB-A, FF++, Other
Improved_VGG_CNN [104] FM DL CNN IMG, VA CELEB-DF
Interpret_Residuals_Bio-Signals [105] FM DL CNN BA CELEB-DF, FF++
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Reference Focus Methods Models Features Datasets
Eyebrow_Recognition [106] DMF DL CNN VA CELEB-DF
Analyze_Convolutional_Traces [109] DMF STAT EM GAN CELEB-A
Multi-LSTM_and_Blockchain [114] DMF BC RNN TEX DF-TIMIT
FakeET [142] FM DL, ML CNN, RF, NB, SA DFDC, FE

LR, k-NN, DT,

SVM
Exploit_Visual_Artifacts [21] DMF ML MLP, LR VA FF, CELEB-A, Other
FakeCatcher [22] DMF DL, ML CNN, SVM STC, BA FF, Other
Inconsistent_Head_Pose [27] FM ML SVM SA. FL UADFV
Protect_World_Leaders [28] DMF ML SVM SA FF
Comp_Face_Forensic [31] DMF DL, ML CNN, SVM FL FF, CELEB-A, FF++, Other
Detecting_Simulating_Artifacts [33] FM DL CNN SA, FDA Other
Predict_Heart_Rate [37] FM DL RNN BA DF-TIMIT
Hybrid_LSTM [39] FM DL CNN, RNN SA Other
FaceForensics++ [42] FM DL CNN Other FF++
Face_Warping_Artifacts [47] FM DL CNN SA UADFV, DE-TIMIT
Capsule [62], [63] DMF DL CNN LS FF++
Poster [67] DMF DL RNN IFIC FF++
Recurrent_Conv_Strategies [68] FM DL CNN FL FF++
Optical_Flow [72] DMF DL CNN VA FF++
ForensicTransfer [73] DMF DL CNN LS FF, Other
Multi-task_Learning [74] DMF DL CNN SA FF, FF++
Locality-aware_Auto-Encoder [75], [77] DMF DL CNN LS CELEB-A, FF++
Human_Social_Cognition [78] FM DL HMN VA FF, FFW. FF++
Face_Image Manipulation [85] FM DL, ML CNN, XGB,ADB FL MANFA, SMFW
Pairwise_Learning [89] FM DL CNN STC CELEB-A
Separable-CNN [101] DMF DL CNN SA FF++
Robust_Estimation_Viewpoint [110] DMF STAT Other N/A N/A
Blockchain_Smart_Contracts [111] DMF BC RNN, ETH N/A N/A
FaceForensics [11] FM DL CNN Other FF
Two-Stream_Neural_Networks [30] FM DL, ML CNN, SVM IMG Other
Learn_Rich_Features [34] FM DL RCNN SA Other
MesoNet [40] FM DL CNN MES DF, FF
In_Ictu_Oculi [46] FM DL RCNN SA UADFV
DF _Detection_by_RCNN [66] FM DL CNN, RNN STC Other
Forensics_Face_Detection [81] DMF DL CNN GAN CELEB-A
Face_Recognition_Threat [91] DMF DL CNN STC. VA DF-TIMIT
Photoresponsive_pattern [107] DMF STAT STAT CPRNU Other

Rana et al. “Deepfake Detection: A systematic Literature Review” Table 6 continued,
https://doi.org/10.1109/ACCESS.2022.3154404

Category  Metrics #Studies Min Max Mean STD
Accuracy 50 63.15 1000 89.73 10.08
Deep AUC 37 0.572  1.000 0917 0.114
Learning Recall 5 8274 100.0 8947 12.88
Precision 6 90.55 100.0 88.89 4.948
Accuracy 12 85.00 91.07 86.86 11.04
Machine AUC 12 0.531  1.000 0.909 0.127
Learning Recall 2 82.74 92.11 89.92 10.15
Precision 2 90.55 9640 9348 4.137

Rana et al. “Deepfake Detection: A Systematic Literature Review” Table 9,
https://doi.org/10.1109/ACCESS.2022.3154404
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Table 3. References of articles with average accuracy and AUC scores achieved by the different datasets.
Some spaces are empty due to the unavailability of data

Accuracy AUC
No.  Dataset
Reference Average score Reference Average score
1 Faceforensics [23] 98 - -
2 Faceforensics++ [24], [25], [26], [27], [28], 942 [39], [40], [41], [42], [43] 93.55

(291, [301. [31], [32], [33],
[34], [35]. [36], [37], [38]

3 DeepFakeDetection [44] 90.80 - -

4 UADFV [45], [46], [47] 93.4 [48], [49] 98.7

5 Deepfake TIMIT [38] 99.45 [39], [44], [50]. [51] 92.96

6 Celeb-DF [25], [29], [33]. [35], [36], 85.79 [27], [43], [49], [50], [53], 82.23
[41], [45], [47], [52] (54]

7 Celeb-DFv2 [34] 99.31 [40], [32], [31] 88.01

8 DFDC preview [24], [45], [55], [56], [57] 91.61 [51] 84.4

9 DFDC [29], [35], [42], [58] 83.27 [29], [31], [41], [42], [59] 89.3

10 DeeperForensics-1.0 [30] 62.46 - -

11 WildDeepfake [34], [35] 85.21 [41] 85.11

12 KoDF - - [51] 89

13 ForgeryNet - - - -

Sohan, M. et al. “A survey on deepfake video detection datasets” Table 3,
https://www.researchgate.net/publication/374142887 A survey on deepfake video detection datas
ets
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7 Wu, J. et al. “A Survey on LLM-generated Text Detection: Necessity, Methods, and Future Directions”
8 Figure 4, http://arxiv.org/abs/2310.14724
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D.5. Benchmark Datasets for LLMs-generated Text Detection

Synthetic text datasets support the detection of synthetic text content due to their ground truth labels.
For example, one dataset focuses on detecting Al-generated text using LLMs trained on a vast amount of
text and code, while the other dataset is designed for long-form text and essays, containing samples of
both human and Al-generated text from various language models. Studies (Wu J. et al, Tables 5 and 6)
and Yang et al, Table 1) summarizes popular benchmark datasets for LLM-generated text detection.
Various benchmark text corpora include synthetic and human text datasets from different domains,
such as finance, medicine, news articles, web, and academic-related writings to support detection.

D.6. Synthetic Audio Detection Methods Summary

Table 1. Summary of AD detection methods studies surveyed.

Year Ref. Speech Language Fakeness Type Technique Audio Feature Used Dataset Drawbacks
DNN-HLL MECC, LECC, CQCC The error rate is chm,‘mdlcatl‘ng.; that the
Yu et al. [29 ASV spoof proposed DNN is overfitting.
2018 uetal. [29] English Synthetic >V Spe — -
IMFCC, GFCC, 2015 [30] Does not carry much artifact information
GMM-LLR B . M . 5
IGFCC in the feature representations perspective.
3 The model is highly overfitting with
2019 Alzantot English Synthetic Residual CNN MFCC, CQCC, STFT ASV spoof synthetic data and cannot be generalized
etal. [40] 2019 [19]
over unknown attacks.
- R . . ASSERT (SENet + SR, ASV spoof The model is highly overfitting with
47 i . Y
2019 C. Lai et al. [42] English Synthetic ResNet) Logspec, CQCC 2019 [19] synthetic data.
Requires transforming the input into a
P. RahulT . . N y ASV spoof 2-D feature map before the detection
2020 etal. [36] English Synthetic Reshlet-34 Spectrogram 2019 [19] process, which increases the training time
and effects its speed
Classical Classifiers Failed to capture spurious correlations,
(SVM-Linear, _ and features are extracted manually so
SVMRBE, Arabic they are not scalable and needs extensive
. LR, DT, RE, XGBoost; o manual labor to prepare the data
2020 Lntmfsl:\ Classical Arabic Imitation ) Diversified prep
etal. [23] Audio DL accuracy was not as good as the
DL Classifiers (CNN, MFCC spectrogram (AR-DAD) [24] classical methods, and they are an
BiLSTM) Spectrogrs image-based approach that requires
special transformation of the data.
Rodriguez- Spanish, English, ) ‘ Failed to ca‘pturc spurious curm]atm—ns‘,
. Time domain . and features are extracted manually so it
2020 Ortega Portuguese, French, Imitation LR H-Voice [16] L . R I
" waveform is not scalable and needs extensive
etal. [3] and Tagalog
manual labor to prepare the data.
High-dimensional
N . | . . N data visualization of . - T . N L
2020 Wang et al. [31] English, Chinese Synthetic Deep-Sonar MFCC, raw neuron, FoR dataset [28] Highly affected by real-world noises.
activated neuron
. . ST i SV e They use an image-based approach that
2020 Subramani and English Synthetic EfficientCNN and Spectrogram ASV spoof requires special transformation of the

Rao [21]

RES-EfficientCNN

2019 [19]

data to transfer audio files into images.

Almutairi Z. et al. “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future

Directions,” Table 1.
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Year Ref. Speech Language Fakeness Type Technique Audio Feature Used Dataset Drawbacks
2020 Shan and English Synthetic Bidirectional LSTM MFCC - The method did not pecform well over
Tsai [35] long 5 s edits.
. MEFCC, UrbanfSUupdSK, The proposed model does not carry much
Wijethunga . . ) Conversational, . . -
2020 etal [32] English Synthetic DNN Mel-spectrogram, AMI-Corpus artifact information from the feature
e STFT and FoR ’ representations perspective.
It needs extensive computing processing
since it uses a temporal convolutional
. o - - . ASV spoof network (TCN) to capture the context
2020 Jiang et al. [43] English Synthetic 55AD LPS, LFCC, Qe 2019 [19] features and another three regression
workers and one binary worker to predict
the target features.
The model proposed is complex and
contains many layers and convolutional
. CRNN-Spoof cQcc networks, so it needs an extensive
2020 Chintha English Synthetic ASV spoof computing process. Did nat perform well
etal. [33] 2019 [19] compared to WIRE-Net-Spoof.
-~ Did not perform well compared to
WIRE- Net-Spoof MFCC CRNN-Spoof.
. Features are extracted manually so it is
2020 Kum.ar-Smglj English Synthetic Q-SVM MFCC, - not scalable and needs extensive manual
and Singh [17] Mel-spectrogram
labor to prepare the data.
Zhenchun Lei . . CNN and Siamese ASV spoof The models are not robust to different
2020 etal. [25] English Synthetic CNN CQCC, LFCC 2019 [19] features and work best with LFCC only.
M. Ballesteros Spanish, English, Syntheti Histogram, The model was not scalable and was
2021 C DAESINIOS Portuguese, French, ynthetie Deep4SNet Spectrogram, Time H-Voice [16] affected by the data transformation
etal. [5] Imitation .
and Tagalog domain waveform process.
They used an image-based approach,
) which required a special transformation
ER. Bartusiak . )
2021 and EJ. English Synthetic CNN Spectrogram ASV ap&:nf of the data, and the aut]‘\urs found that
Delp [22] 2019 [19] the model proposed failed to correctly

classify new audio signals indicating that
the model is not general enough.

Almutairi Z. et al. “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future
Directions,” Table 1 continued.

Year Ref. Speech Language Fakeness Type Technique Audio Feature Used Dataset Drawbacks
Borrelli ASV spoof Features extracted manually so they are
2021 . English Synthetic RF, SVM STLT P not scalable and needs extensive manual
etal. [18] 2019 [19]
labor to prepare the data.
It was observed from the experiment that
. Meso-4 overfits the real class and
Mesolnception-4, R N
Khalid et al. Meso-4, Xception, Three-channel image Mesolnception- overfits the fake class,
2021 o . English Synthetic b ! S FakeAVCeleb [39] and none of the methods provided a
[38] EfficientNet-BO, of MFCC . L
VGCl6 satisfactory performance indicating that
they are not suitable for fake audio
detection.
Feature-based (SVM, Vector of 37 features Features extracted manually so they are
RF, KNN, XGBoost, of audio N not scalable and needs extensive manual
and LGBM labor to prepare the data.
201 Khochare English Synthetic ) FoR dataset [28] Prep:
etal. [37] It uses an image-based approach and
Image-based (CNN, lspec d X with i d
TCN, STN) Melspectrogram could not work with inputs converted to
! STFT and MFCC features,
Features extracted manually so it is not
SVM MFCC scalable and needs extensive manual
2021 Liu et al. [20] Chinese Synthetic - labor to prepare the data.
CNN _ The error rate is zero indicating that the
proposed CNN is overfitting.
S. Camacho It did not perform as well as the
2021 'ﬂ ;] [‘Zc'f English Synthetic CNN Scatter plots FoR dataset [28] traditional DL methods, and the model
als needed more training.
o ; Synthetic ASV spoof Does not perform well over an
2021 T. Arif etal. [41] English imitated DBIiLSTM ELTP-LFCC 2019 [19] imitated-based dataset.

Almutairi Z. et al. “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future
Directions,” Table 1 continued.

D.7. Synthetic Audio Detection Datasets and Results Summary

The latest datasets have been created for the purpose of synthetic audio detection methods.
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1  The table below summarizes recent datasets. These datasets include various language speakers and use
2 aneural voice cloning tool. The dataset that has been created can be used in the detection model to
3 identify both imitation-based and synthetic-based audios with minimal preprocessing and training time.
4  However, it is still necessary to create a new dataset to further enhance the detection of synthetic
5 audio.
Real Fake Sample Fakeness Speech
Year Dataset Total Size Sample Sample L 1; T Format L P Accessibility Dataset URL
Size Size ength (s ype anguage
. . https:/ /www.caito.de/2019/01/
2018 Th‘: M-glhﬁ]ﬁb 18,7 h 9265 806 1-20 Synthetic WAV German Public the-m-ailabs-speech-dataset/
opeec (accessed 3 March 2022)
Baidu Silicon https:/ /audiodemos.github.io/
. . . s:/ /audiodemos.g o/
2018 Valley Al.Lab> 6h 10 120 2 Synthetic Mp3 English Public (accessed 3 March 2022)
cloned audio [45]
. https:/ /bil.eecs.yorku.ca/
2019 T?L‘zr‘:ﬁif*]“l ll’;figgo 111,000 87,000 2 Synthetic  Mp3, WAV English Public datasets/ (accessed 20
- ) November 2021)
AR-DAD: Arabic Classical DT
2020 Diversified 16,209 Files 15,810 397 10 Imitation WAV assied Public o menc s ey tom/ca s/
Audio [24] Arabic 3kndp5vséb/(accessed 20
November 2021)
I Spanish,
_ 2 Imitation '“g;';f;"“ Imitation ) English, _ hitps://datamendeley.com/
2020 H-Voice [16] Files 3332 Syntheti 2-10 Syntheti PNG Portuguese, Public datasets/k47yd3m28w /4
res Synthetic 4 yr‘,?; e ynihetic French, and (accessed 20 November 2021)
Tagalog
Only older , .
/ https:/ /datashare.ed.ac.uk/
2021 ASY spoof 2021 - 2 Synthetic Mp3 English versions  dle /10283 /3336(accessed 20
allenge available
November 2021)
thus far
20,490 https:/ /sites.google.com/view /
2021 FakeAVCeleb [39] o 90 20,000 7 Synthetic Mp3 English Restricted  fakeavcelebdash-lab/ (accessed
Hles 20 November 2021)
. ' https:/ /sites.google.com/view /
2022 ADD [46] 85h LE:300 LE:700 210 Synthetic WAV Chinese Public fakeavcelebdash-lab/ {accessed 3
PF:0 PF:1052 Moy 20291

7  Almutairi Z. et al. “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future
8 Directions,” Table 2.

Results (The ResultIs
Measures Dataset Detection Method Approximate from the Evaluation
Test Published in the Study)
DNN-HLLs [29 12.24%
ASV spoof 2015 challenge s 129]
GMM-LLR [29] 42.5%
Residual CNN [40] 6.02%
SENet-34 [42] 6.70%
CRNN-Spoof [33] 4.27%
ResNet-34 [36] 5.32%
EER ASV spoof 2019 challenge Siamese CNN [25] 8.75%
CNN [25] 9.61%
DBiLSTM [41] (Synthetic Audio) 0.74%
DBILSTM [41] (Imitation-based) 33.30%
SSAD [43] 5.31%
- Bidirectional LSTM [35] 0.43%
CNN [27] 11.00%
FoR
Deep-Sonar [31] 2.10%

9

10  Almutairi Z. et al. “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future
11 Directions,” Table 3.
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Results (The Result Is

Measures Dataset Detection Method Approximate from the Evaluation
Test Published in the Study)
Residual CNN [40] 0.1569
SENet-34 [42] 0.155
CRNN-5poof [33] 0.132
t-DCF ASV spoof 2019 challenge .ResNet-34 [36] 0.1514
Siamese CNN [25] 0.211
CNN [25] 0217
DBILSTM [41] (Synthetic Audio) 0.008
DBIiLSTM [41] (Imitation-based) 0.39
ASV spoof 2019 challenge CNN22] 85.99%
SVM [18] 71.00%
CNN [23] 94.33%
BiLSTM [23] 91.00%
SVM [23] 99.00%
DT [23] 73.33%
AR-DAD RF [23] 93.67%
LR [23] 98.00%
XGBoost [23] 97.67%
SVMRBEF [23] 99.00%
SVM-LINEAR [23] 99.00%
DNN [32] 94.00%
Deep-Sonar [31] 98.10%
STN [37] 80.00%
Accuracy TCN [37] 92.00%
SVM [37] 67%
FoR
RF [37] 62%
KNN [37] 62%
XGBoost [37] 59%
LGBM [37] 60%
CNN [27] 88.00%
EfficientNet-B0 [38] 50.00%
Xception [38] 76.00%
FakeAVCeleb Mesolnception-4 [38] 53.96%
Meso-4 [38] 50.36%
VGG16 [38] 67.14%
) LR [3] 98%
H-Voice Deep4SNet [5] 98.5%
- Q-SVM [17] 97.56%
- CNN [20] 99%
- SVM [20] 99%
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Appendix E. Testing and Evaluation

E.1. Background: Testing, and Evaluating Synthetic Content Generators

Many of the experimental methods and practices that test the quality of synthetic content are also used
to test, and evaluate digital transparency techniques. We summarize these techniques here. The tests
covered here are accuracy tests that are numerically scored using a numerical accuracy metric scored by
a computer.

E.2. Background: A Common Testing Experiment Framework

Many of the experiments testing synthetic content authentication techniques have a common design.
often used to test a supervised machine learning classifier, which we now describe in more detail. First,
these experiments use a test or evaluation dataset of media (e.g., images, text segments, audio
segments, video segments, code). Then, the experiment provides input to the Al system. These inputs
are either a single content piece or a pair of content pieces. When the input is a single content piece, the
system will be asked to say how likely it is that that content is of the “positive” class. The answer is often
expressed as a real number between 0 and 1. A value of 0 means the content is considered to be
“negative,” while a value of 1 means the content piece is considered to be certainly a positive. The
higher the real number, the more likely the system believes that the content piece is of the “positive”
class. The meaning of the positive class varies: For detection, a 1 indicates that the input is fake (i.e., Al-
generated). For pairs of content, the system will be given two images and asked to show how often the
content pair is of a positive class, again with a real number from 0 to 1.

In both of these contexts, each trial has a ground truth of 0 or 1 and a system real number between 0
and 1. This output can be scored as machine learning classification tasks are often scored, using a
performance accuracy metric. A variety of classification accuracy metrics, including fraction correct,
precision, and recall, are defined. Two particular visualizations used are the Receiver Operator Curve
(ROC) and the Detection Error Tradeoff (DET) curve, and the metrics used to score from these
visualizations are the Area under the ROC (AUC) and the minimum of a Decision Cost Function (DCF) (a
DCF is a weighted sum of misses and false alarms). These visualizations and metrics not only measure
the system’s accuracy as it makes decisions but also how its accuracy (in terms of misses and false
alarms) change when the system changes its threshold to become more lenient or stricter. This
framework is used quite often for the testing and measuring of content authentication techniques.

E.3. Background: Frameworks for Model and Data Transparency

One form of testing software is for humans to manually spot-check or check properties of the synthetic
content systems. Having transparency into the system and its models, the training data, and the data
used to test the system can provide helpful information to users as they spot-check and test the
different synthetic content systems. There are a variety of frameworks that provide ways to disclose key
details about the model, as well as any data used in training or testing. Various frameworks include
model cards, data sheets, a model card guidebook, and Al fact sheets.

E.4. Adversarial Attacks and Defenses on Synthetic Content

A common framework used to measure the quality of synthetic content is to construct attacks and
defenses on the system. There are a variety of adversarial attacks that exist, but the ones typically used
to evaluate systems involve adding carefully-crafted data inputs either to the training set or the test set
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so that the system will mishandle or misclassify images in the test set. As attacks and defenses are used
relevant to the context of the system and how it is being used, one way the context is represented is by
defining or restricting attacks relative to a threat model. One example of a threat model is: all attacked
images are images altered from the test set where the alteration does not change the true class and the
maximum distance (such as a norm) from that original image is at most a small, fix value. This style of
experiment is a common way to evaluate attacks and defenses, as seen in studies from December 2013,
February 2016, and May 2016.

When constructing attacks and defenses, specific strategies are used. The first such strategy (and a
baseline strategy) is to construct an attack on the data, and then train a defense specific to treating that
attack, and using that as the (attack, defense) pair. As this strategy does not show how the defense
generalizes relative to other attacks, a second strategy has been developed. This strategy is a
transferability analysis. A transferability analysis measures if attacks and defenses trained on one model
and on one dataset can be successful on other datasets and situations. There is both intra-algorithm
transferability (where the attack and defense are trained on one dataset but the system now must
handle the same attack on a different dataset); as well as inter-algorithm transferability (using
adversarial attacks from one trained model to fool a completely different algorithm, sometimes trained
on the training dataset). The third strategy takes testing defenses on new attacks further and is a
binarization test. This strategy uses a custom-designed machine learning classification to generate
additional attacks to test the robustness of given defenses.

E.5. Theoretical Proofs To Support Synthetic Content Techniques

Mathematical proofs can guarantee success or establish properties supporting the correctness,
efficiency, or effectiveness of synthetic content techniques. By proving specific components of a
synthetic content generator correct, it can give evidence of the generator’s effectiveness in certain
situations. For defenses against adversaries fooling classifiers with tampered images, one such proof s a
robustness certificate. In more detail, a robustness certificate gives a guarantee that that no attempt to
alter image by at most a pre-specified small amount (according to a distance metric) can fool the system
into misclassifying the altered image.

E.6. Similarity and Distance Metrics

Having a way to compare the quality of generated images to regular images is important. As human
labels are expensive, having an automated way to compute image similarity (or image distance) can be
efficient. In particular, there is a belief that Al-generated images are considered better or higher quality
if they are more similar to human-generated images in the data. Similarity metrics are often from 0 to 1,
where identical images have value 1 and completely different inputs have value 0. Distance metrics are
such that an input has distance 0 to itself; the more different the two inputs are, the higher the distance.
There are a variety of these metrics, automated similarity, and distance metrics used for specific use
cases are in the Table below. Although this table aims to provide examples used in sources, this table
should be viewed neither as representative nor as all-inclusive. Similarity metrics specifically for text also
exist; these metrics are sometimes evaluated by comparing these scores to human judgements in
separate experiments.
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Use Case

Measuring Quality of Automatically-
Generated Images

Distance Metrics used to Show
robustness of defenses

Measuring the Quality of Al-
Generated Text

Measuring the Quality of
Watermark Extraction

Measuring the Quality of Digital
Fingerprinting (Hash Distance
Metrics)

Example Metrics Used

the Inception Score (IS), Fréchet Inception Distance (FID,
and based of the Fréchet distance), the Structural

Similarity Index (SSIM)

Lp distance norms (including Euclidean distance)

Self-BLEU Score, Mauve Score

Pixel correlation to original watermark

Hamming Distance, Euclidean Distance (L2 norm),
Correlation Coefficient
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Appendix F. Glossary

Al Content Detection: Determining whether content is Al-generated or not.

Al System: An engineered or machine-based system that can, for a given set of objectives, generate
outputs such as predictions, recommendations, or decisions influencing real or virtual environments. Al
systems are designed to operate with varying levels of autonomy (NIST Al RMF)

Audit: “Independent review and examination of records and activities to assess the adequacy of system
controls, to ensure compliance with established policies and operational procedures.” (NIST SP 1800-
15B under Audit from NIST SP 800-12 Rev. 1)

Authentication: Verifying the identity of a user, process, or device, often as a prerequisite to allowing
access to resources in an information system. (FIPS 200 under AUTHENTICATION)

Authenticity: With respect to digital content transparency, it refers to the quality of being genuine, with
trustworthiness about its source or origin.

Best practices: “A procedure that has been shown by research and experience to produce optimal
results and that is established or proposed as a standard suitable for widespread adoption.” (NIST SP
1800-15B from Merriam-Webster NIST SP 1800-15C from Merriam-Webster)

Content authentication: utilizes provenance data tracking methods to determine the authenticity of
content ( i.e., to indicate non-synthetic origins).

CSAM: Child sexual abuse material.

Digital content transparency: refers to the ability to obtain access and exposure to information
regarding the origin and history of digital content. Transparency does not directly imply trust, but rather
provides a vehicle for individuals, organizations, and other entities to have greater information access.

Digital signature: The result of a cryptographic transformation of data that, when properly
implemented, provides a mechanism for verifying origin authentication, data integrity, and signatory
non-repudiation. (FIPS 186-5)

Digital watermarking: involves embedding information into content (image, text, audio, video) in order
to make it difficult to remove. The goal of such watermarking is to assist in verifying the authenticity of
the content or characteristics of its provenance, modifications, or conveyance. (White House EQ, 2023)

Evaluation: systematic determination of the extent to which an entity meets its specified criteria; (2)
action that assesses the value of something (https://airc.nist.gov/Al RMF Knowledge Base/Glossary
citing ISO/IEC 24765)

Hash function: A hash function is any function that can be used to map data of arbitrary size to fixed-
size values

Information integrity: Describes the spectrum of information and associated patterns of creation,
exchange, and consumption in society, where high-integrity information is trustworthy; distinguishes
fact from fiction, opinion, and inference; acknowledges uncertainties; and is transparent about its level
of vetting. (White House, 2022)

Interoperability: “The ability of the user of one member of a group of disparate systems (all having the
same functionality) to work with any of the systems of the group with equal ease and via the same
interface.” (Britannica)
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Least Significant Bit: The least significant bit is the lowest bit in binary numbers.

Metadata: “Information describing the characteristics of data including, for example, structural
metadata describing data structures (e.g., data format, syntax, and semantics) and descriptive metadata
describing data contents (e.g., information security labels).” (NIST SP 800-150 under Metadata, CNSSI
4009-2015)

NCII: Non-consensual intimate imagery

Open information ecosystem: Supports a free exchange of ideas, enables ideas to flow from multiple
sources, empowers people to express conflicting perspectives in a constructive manner, and leverages a
free market of technologies to distribute information to audiences. (White House, 2022)

Provenance data tracking: records the origin and history for digital content, allowing its authenticity to
be determined. It consists of techniques to record metadata as well as overt and covert digital
watermarks on digital content. Provenance data tracking can help to establish the authenticity, integrity,
and credibility of digital content. (NIST SP 800-161r1 NIST SP 800-218 from NIST SP 800-53 Rev. 5 NIST
SP 800-37 Rev. 2)

Software Testing: The evaluation of software that utilizes Verification and validation (also abbreviated
as V&V) to check that a product, service, or system meets requirements and specifications and that it
fulfills its intended purpose. (Global Harmonization Task Force - Quality Management Systems - Process
Validation Guidance (GHTF/SG3/N99-10:2004 (Edition 2) page 3)

Standard: a “document, established by consensus and approved by a recognized body, that provides —
for common and repeated use — rules, guidelines or characteristics for activities or for their results,
aimed at the achievement of the optimum degree of order in a given context.” (I1SO)

Steganography: Steganography is a technique which hides a watermark or content information file
inside a primary media file. One of the more common types of steganography involve embedding this
hidden or secret information in the Least Significant Bit of a media file, which is done by slightly
modifying or adding additional information to bytes (or bits on those bytes) of data within pixels in a
media file. (Authenticating Al-Generated Content, 2024, NIST SP 800-101 Rev. 1 under Steganography,
NIST SP 800-72 under Steganography)

Synthetic content: “information, such as images, videos, audio clips, and text, that has been significantly
altered or generated by algorithms, including by Al” (White House Al EO)

Test: (1) activity in which a system or component is executed under specified conditions, the results are
observed or recorded, and an evaluation is made of some aspect of the system or component; (2) to
conduct an activity as in (1); (3) set of one or more test cases and procedures.

https://airc.nist.gov/Al RMF_Knowledge Base/Glossary citing
https://www.iso.org/obp/ui/en/#iso:std:iso-iec-ieee:24765:ed-2:v1.en
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