
N-DISE: NDN-based Data Distribution for Large-Scale
Data-Intensive Science

Yuanhao Wu

Faruk Volkan Mutlu

Yuezhou Liu

Edmund Yeh

wu.yuanh@northeastern.edu

mutlu.f@northeastern.edu

liu.yuez@northeastern.edu

eyeh@ece.neu.edu

Northeastern University

Boston, MA, USA

Ran Liu

liuranapply@gmail.com

Google

Madison, WI, USA

Catalin Iordache

Justas Balcas

Harvey Newman

Raimondas Sirvinskas

catalinn.iordache@gmail.com

jbalcas@caltech.edu

newman@hep.caltech.edu

raimis.sirvis@gmail.com

California Institute of

Technology

Pasadena, CA, USA

Michael Lo

Sichen Song

Jason Cong

Lixia Zhang

milo168@g.ucla.edu

songsichen123@gmail.com

cong@cs.ucla.edu

lixia@cs.ucla.edu

UCLA

Los Angeles, CA, USA

Sankalpa Timilsina

Susmit Shannigrahi

stimilsin43@tntech.edu

sshannigrahi@tntech.edu

Tennessee Technological

University

Cookeville, TN, USA

Chengyu Fan

chengy.fan@gmail.com

Pure Storage

Mountain View, CA, USA

Davide Pesavento

Junxiao Shi

Lotfi Benmohamed

davide.pesavento@nist.gov

junxiao.shi@nist.gov

lotfi.benmohamed@nist.gov

NIST

Gaithersburg, MD, USA

ABSTRACT
To meet unprecedented challenges faced by the world’s largest

data- and network-intensive science programs, we design and im-

plement a new, highly efficient and field-tested data distribution,

caching, access and analysis system for the Large Hadron Collider

(LHC) high energy physics (HEP) network and other major sci-

ence programs. We develop a hierarchical Named Data Networking

(NDN) naming scheme for HEP data, implement new consumer and

producer applications to interface with the high-performance NDN-

DPDK forwarder, and build on recently developed high-throughput

NDN caching and forwarding methods. We integrate NDN sys-

tems concepts and algorithms with the mainstream data distribu-

tion, processing, and management system of the Compact Muon

Solenoid (CMS) experiment. We design and prototype stable, high-

performance virtual LANs (VLANs) over a continental-scale wide

area network testbed. In extensive experiments, our proposed inte-

grated system, named NDN for Data-Intensive Science Experiments

(N-DISE), is shown to deliver LHC data over the wide area network

(WAN) testbed at throughputs exceeding 31 Gbps between Caltech

and StarLight, with dramatically reduced download time.

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor, or affiliate of the United States government. As such, the United States

government retains a nonexclusive, royalty-free right to publish or reproduce this

article, or to allow others to do so, for government purposes only.

ICN ’22, September 19–21, 2022, Osaka, Japan
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9257-0/22/09. . . $15.00

https://doi.org/10.1145/3517212.3558087

CCS CONCEPTS
• Networks → Network architectures; Network protocols;
Network algorithms; Network performance evaluation.

KEYWORDS
named data networking, information centric networking, naming,

caching, forwarding, high energy physics, large hadron collider.

ACM Reference Format:
Yuanhao Wu, Faruk Volkan Mutlu, Yuezhou Liu, Edmund Yeh, Ran Liu,

Catalin Iordache, Justas Balcas, Harvey Newman, Raimondas Sirvinskas,

Michael Lo, Sichen Song, Jason Cong, Lixia Zhang, Sankalpa Timilsina,

Susmit Shannigrahi, Chengyu Fan, Davide Pesavento, Junxiao Shi, and Lotfi

Benmohamed. 2022. N-DISE: NDN-based Data Distribution for Large-Scale

Data-Intensive Science. In 9th ACM Conference on Information-Centric Net-
working (ICN ’22), September 19–21, 2022, Osaka, Japan. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3517212.3558087

1 INTRODUCTION
In spite of network technology advances, the largest data- and

network-intensive science programs including the Large Hadron

Collider (LHC) [24] program, the Joint Genome Institute appli-

cations and the BioGenome project [7, 11], face unprecedented

challenges: in global data distribution, processing, access and anal-

ysis, in the coordinated use of massive but still limited computing,

storage and network resources, and in the operation and collabora-

tion within global scientific enterprises each comprised of hundreds

to thousands of scientists.

One of the most data-intensive programs is the LHC high energy

physics (HEP) program, which has an estimated 900 petabytes under

https://doi.org/10.1145/3517212.3558087
https://doi.org/10.1145/3517212.3558087

ICN ’22, September 19–21, 2022, Osaka, Japan Wu et al.

management at more than 170 sites in the US and around the world.

The corresponding network traffic, which already exceeded 1600

petabytes (1.6 exabytes) in 2019, is projected to grow by another

order of magnitude or more by the start of the upgraded High

Luminosity LHC (HL LHC) program beginning in 2027 [2].

The HEP community is not the only one facing these challenges.

Take, for example, human genome sequencing in the biology com-

munity. It is anticipated that around 1 exabyte of human genome

data exists [22] in institutional repositories, research labs, and in

the genome sequencing industry. Furthermore, these numbers are

only for human genome data—similar amounts of data exist for

plants [32], animals [31], viruses [13], and bacteria [33]. Finally, the

Earth Biogenome project [8] aims to sequence all known species in

the tree-of-life. The data volume for this project alone is expected

to exceed an exabyte [7].

Tomeet the sustained and peak needs of these data- and network-

intensive science fields within feasible resource constraints, more

efficient and less resource-intensive data access and distribution

methods are required. An effective approach for this is Named Data

Networking (NDN), a leading data-centric network architecture

with intuitive and efficient naming, security and provenance, data

access, caching, and forwarding methods and structures.

In this paper, we describe an innovative effort to meet unprece-

dented challenges faced by the world’s largest data- and network-

intensive science programs, by designing and implementing a new,

highly efficient and field-tested data distribution, caching, access

and analysis system for the LHC HEP network and other major

science programs. We name this system NDN for Data Intensive
Science Experiments (N-DISE). Our major contributions include the

following:

• We develop and prototype the first high-performance NDN-

based integrated data delivery system for large-scale data-

intensive science applications.

• We develop an NDN naming scheme for CMS data. To ad-

dress the incongruity where the names of the CMS data at

different granularity do not share the same prefix, we intro-

duce an additional name mapping scheme to associate data

objects used by workflows (e.g., blocks of CMS data) with

data units directly used in network requests (e.g., files of

CMS data).

• To achieve exceptional packet forwarding performance, we

develop consumer and producer applications that interface

with the multi-threaded high-throughput NDN-DPDK for-

warder [29]. We also develop the NDNc library which offers

APIs for these applications to efficiently communicate with

the NDN-DPDK forwarder using memif, a shared memory

packet interface providing high performance packet trans-

mission.

• To achieve outstanding caching and forwarding performance,

we integrate the VIP joint caching and forwarding algo-

rithm [34], which has leading throughput, delay, and cache

hit ratio performance, with the NDN-DPDK forwarder and

the new NDNc-based consumer and producer applications.

• We establish a high-bandwidth, long-range wide area net-

work testbed, with nodes at Northeastern (MGHPCC), UCLA,

Tennesee Tech, and StarLight Chicago, with 100 Gbps con-

nections running from MGHPCC through StarLight to Cal-

tech.

• Working with many partners (Internet2, ESnet, CENIC), we

provision dedicated VLANs over which we can directly ex-

periment with NDN protocols and algorithms at layer 2.

• We extensively experiment with the NDNc-based consumer

and producer applications, the NDN-DPDK forwarder, and

VIP joint caching and forwarding. We carry out extensive

testing using LHC data files on the fully operational long-

range WAN testbed. We show that the deployed system

can reach a maximum throughput of 31 Gbps, and VIP joint

caching and forwarding can simultaneously increase through-

put and decrease download delay, relative to multiple base-

line algorithms.

The use of NDN-based data delivery systems for data-intensive

science applications has seen limited investigation thus far, in the

context of climate science [18, 25], high energy physics [9, 12],

and genomics [26]. In contrast to the cited works, the N-DISE

system presented in this paper aims to achieve significantly higher

throughput by effectively integrating a number of essential high-

performance system components, and to demonstrate performance

gains over WAN testbeds operating at link capacities exceeding

100 Gbps.

The rest of this paper is organized as follows. In Section 2, we dis-

cuss the NDN naming scheme for CMS data. In Section 3, we present

the details of our software implementation for the NDNc-based con-

sumer and producer applications, as well as the VIP joint caching

and forwarding algorithm. In Section 4, we give an overview of our

WAN testbed. In Section 5, we report the results of our experiments.

In Section 6, we discuss some of the major lessons we derived from

the development and experimentation of N-DISE. Finally, in Sec-

tion 7, we conclude the paper with a brief summary of our efforts

and provide future directions we will take with this work.

2 NAMING OF LHC DATA
The LHC CMS generates petabytes of data from experiments, anal-

ysis, and simulations each year and stores them in special data

formats. For example, CMS generates a large amount of physics

analysis data that gets stored in various Analysis Object Data (AOD)

formats such as MiniAOD and NanoAOD [19, 23]. This large vol-

ume of data is grouped into a hierarchical structure consisting of

three levels in increasing order of granularity: dataset, block and file.
A dataset contains several data blocks and a data block contains

several files.

The content names at each of these granularity levels are hierar-

chical. These names can be converted naturally into hierarchical

NDN names [28, 27] by removing the unnecessary components

(e.g., the first two components of the file name that describes the

filesystem location where the file is stored), reorganizing compo-

nents, and adding new components where necessary. Such an exam-

ple file name can be: "/store/data/Run2017F/SingleMuon/MINIAOD
/17Nov2017-v1/60000/C47DBE62-67E7-E711-B896-5065F37D51
B2.root".

N-DISE: NDN-based Data Distribution for Large-Scale Data-Intensive Science ICN ’22, September 19–21, 2022, Osaka, Japan• We analyzed logs of CMS workflow of
February and March 2019, to determine
the granularity for caching (Files vs
Datablocks):

• Request frequency of files: relatively flat;

• Request frequency of datablocks: sharper
decay.

– At Caltech site, roughly 6000
datablocks were requested, and the
most requested 400 datablocks
covered roughly 80% of all the
requests;

• Datablocks: mostly < 10GBs
– A 10TB cache can roughly cover

80% of all requests at by caching
small datablocks;

Data Flows in LHC Network

0

0.2

0.4

0.6

0.8

1

1
18

6
37

1
55

6
74

1
92

6
11

11
12

96
14

81
16

66
18

51
20

36
22

21
24

06
25

91
27

76
29

61
31

46
33

31
35

16
37

01
38

86
40

71
42

56
44

41
46

26
48

11
49

96
51

81
53

66
55

51
57

36

Datablock Index

Percentage of Requests Covered by Datablocks(March,Caltech)

Size Distribution of Top 500 Datablocks(Caltech)
Figure 1: Percentage of requests covered by data blocks
(February–March 2019, Caltech).

Although naming schemes at each of the granularity levels are

hierarchical, the file, dataset, and block names might follow differ-

ent naming hierarchies. For example, the file above may belong

to a block with the name "/SingleMuon/Run2017F-17Nov2017-v1
/MINIAOD#13f6ce2c-e734-11e7-af75-02163e01b396" and a dataset
with the name "/SingleMuon/Run2017F-17Nov2017-v1/MINIAOD".
Note that these names do not share the same prefix with the ac-

tual file name, which is used by the NDN network for in-network

forwarding and caching.

The CMS users can use these names to request desired data at

the file granularity. They can also request part of the files by spec-

ifying dynamic functions that can filter and create smaller data

from large files. For example, "/store/data/Run2017F/SingleMuon
/MINIAOD/17Nov2017-v1/60000/C47DBE62-67E7-E711-B896-5065
F37D51B2.root/<byte-range>" can be used to extract the specified

byte-range at the data source and transfer the extracted data. How-

ever, in most cases, the user requires all the files in a whole block or

dataset, since the files contained in a block or a dataset are always

strongly correlated.

To address the incongruity where users want to utilize data

blocks but request files by their names, we have built a name map-

ping hash table to record the relationships between files and blocks.

In our current design, each forwarder maintains a name mapping

hash table to allow caching and forwarding algorithms to operate

at the appropriate granularity (e.g. block level) while users still

utilize file names for content retrieval. The name mapping table

need not change frequently due to the relatively static nature of the

CMS data structure, and are assumed to be obtained and updated

through the control plane, as are routing updates.
1

To further motivate the concept of namemapping between differ-

ent data granularities, we analyzed CMS workflow logs of February

and March 2019 and found that while the request frequency for

files is relatively flat, the request frequency for data blocks has

sharper decay. At the Caltech site, roughly 6000 blocks with unique

names were requested, but the 400 most requested blocks covered

roughly 80% of all requests, as Figure 1 shows. Therefore, in the

VIP caching and forwarding algorithm we describe in Section 3, in

order to achieve scalability implementation, we maintain control

state only over these most popular 400 data blocks.

1
In order to quantify the effect of the name mapping table in terms of delay, we

measured the delay incurred by the name mapping as a function of the table size. In

our test results, the additional delay is less than 0.2 milliseconds for table sizes up to

6000 entries and the total number of requested file names up to 60000. This indicates

that the delay effect of name mapping is negligible in terms of system performance.

3 SOFTWARE IMPLEMENTATION
Softwaremakes up a large part of the development of N-DISE. In par-

ticular, to achieve exceptional packet forwarding performance, we

build consumer and producer applications that interface effectively

with the multi-threaded high-throughput NDN-DPDK forwarder.

To achieve outstanding caching and forwarding performance, we

implement the VIP joint forwarding and caching algorithm [34]

aimed at optimizing usage of storage and bandwidth resources, and

integrate it with the NDN-DPDK forwarder. In this section, we

provide a detailed discussion of these software components.

3.1 NDNc Consumer and Producer
To deploy an end-to-end solution for data distribution using NDN

as the underlying architecture, we implement both a consumer and

a producer application, the two fundamental entities in any NDN

data transfer process. The consumer acts as a client that composes

NDN Interest Packets (analogous to a query) to request data from

the network, while the producer is the server with access to the

data on a file system and publishes it in the form of NDN Data

Packets (analogous to a response).

To achieve exceptional packet forwarding performance, we de-

sign our applications to communicate with the high-performance

NDN-DPDK forwarder developed by NIST [29], which has demon-

strated leading throughput performance using multi-threaded for-

warding. One challenge with this approach is the lack of any NDN

C++ library compatible with this new forwarder. We therefore

develop our own lightweight C++ library called NDNc [16] that

bridges the ndn-cxx library [21] with the NDN-DPDK forwarder,

while adding a small number of common features needed by the

consumer and producer applications. The NDNc library offers PIT

token support (required for interoperability with NDN-DPDK), a

memif -based face [1] capable of providing efficient packet transmit

and receive functions to and from a locally running forwarder, an

NDN packet encoder and decoder, Interest pipelining controlled

by either a fixed-window or a congestion-aware AIMD algorithm,

and a GraphQL [10] client that can configure the local forwarder

by creating and deleting faces and registering name prefixes.

Using NDNc, we have developed a file transfer consumer and

producer for benchmarking the performance characteristics of the

library. The consumer and producer are deployed using Docker

containers. Both entities follow a predefined naming scheme, and

use the same name prefix. There are two types of Data Packets that

can be requested: one for retrieving file information (or metadata)

and the other for retrieving the file contents. Upon receiving an

Interest Packet, the producer parses its name in order to extract the

file path and the type of data it requests. For file information, the

producer calls the POSIX stat system call on the file path and then

embeds the answer in a common Metadata structure in NDNc for

better encoding and decoding. In the case of Interests requesting

content from the file, the producer calls the POSIX read system

call to obtain the desired range of bytes from the file, as specified

by the segment number in the Interest name.

The producer application runs in the network indefinitely, con-

stantly waiting for new requests, while the consumer initiates a file

transfer and then terminates. On initialization, the consumer uses

ICN ’22, September 19–21, 2022, Osaka, Japan Wu et al.

)LOH�WUDQVIHU�FRQVXPHU
>1'1F�EDVHG�DSSOLFDWLRQ@

)RUZDUGHU�0DQDJHU
>&RPSRQHQW��&��
*UDSK4/�FOLHQW@

�
&RQILJXUH�1'1�'3'.

IRUZDUGHU

0DLQ
>&RPSRQHQW��&��@

�
5HTXHVW�ILOH�FRQWHQW

3LSHOLQH
>&RPSRQHQW��&��
FRQJHVWLRQ�ZLQGRZ@

$,0'�)L[HG

)DFH
>&RPSRQHQW��&��
PHPLI�LQWHUIDFH@

6HQG�UHFHLYH�SDFNHWV

&06�8VHU
>3HUVRQ@

�
,QLWLDWH�ILOH�WUDQVIHU

1'1�'3'.�)RUZDUGHU
>6RIWZDUH�6\VWHP@

�
+LJK�VSHHG�1'1�IRUZDUGHU

,QWHUHVW�SDFNHWV
>HQTXHXH@

'DWD�SDFNHWV
>GHTXHXH@

,QWHUHVW�SDFNHWV
>VHQG@

'DWD�SDFNHWV
>UHFHLYH@

&DOO
>&��@

1'1�/��SDFNHWV
>VHQG@

1'1�/��SDFNHWV
>SROO@

5HTXHVW�ILOH
>FRPPDQG�OLQH@

-621V
>TXHU\@

Figure 2: Component diagram for the NDNc consumer appli-
cation.

the GraphQL client to configure a new interface with the local for-

warder and then requests metadata information about a file passed

as an input argument via the command line. If the requested file is

found, the consumer constructs two worker groups, one for sending

Interests and one for receiving Data Packets and assembling the

result. The Interest Packets are passed to the pipeline that manages

the congestion window and then to the local face that encodes the
Interest to NDN L2 packets and finally sends the packets to the

forwarder through the memif interface. The data is decoded from

L2 and then passed to the receiving worker group. The pipeline

takes care of NACK packets and timeouts. Once the file transfer is

complete, the consumer destroys its face with the forwarder. The

components of the consumer are shown in Figure 2.

3.2 VIP Joint Caching and Forwarding
To achieve outstanding caching and forwarding performance, we

build a single-threaded software implementation of the VIP caching

and forwarding algorithm, which has theoretically proven and nu-

merically demonstrated leading performance in throughput, delay,

and cache hit ratio [34]. We then integrate the VIP implementation

with the high-performance NDN-DPDK forwarder [29]. We refer

to this integrated caching and forwarding software suite as VIP-

NDN-DPDK. Before we present the details of this implementation,

we first give an overview of the VIP framework, as well as the

distributed joint caching and forwarding algorithm we implement.

The VIP framework employs a virtual control plane, in which

user demand rate for data objects in the network is measured

through Virtual Interest Packet (VIP) counts. When a request for a

data object enters the network at a given node, a corresponding VIP

for that object is generated at that node, and the corresponding VIP

count for the object is incremented at that node. Each node in the

network maintains a separate VIP counter for each object, periodi-

cally communicates its VIP counts with its neighbors, and updates

the same counters. The evolution of the VIP counters follows the

controlled queuing dynamics of the VIPs in the virtual plane. Thus,

when a node forwards VIPs for a data object to a neighboring node

according to the control algorithm, the sending node decrements

the VIP counter for the data object, and the receiving neighboring

node increments its VIP counter for the same object. At the source

node for a data object, the VIP counter for that object is fixed at 0.

If a node is not the source node for a data object but is caching the

object, the corresponding VIP counter at that node is decremented

over time at a rate proportional to the readout rate of the node, i.e.,

the rate at which it can produce copies of the object.

At an intuitive level, one can better understand the principle

underlying the VIP framework by viewing VIP counts as potentials.
At the entry points of requests for a data object, the VIP count

(potential) for the data object is high, while at the caching node

and source node for the data object, the potential is low. In the

virtual plane, the VIPs for the data object follow a gradient from the

high-potential entry points to the low-potential caching and source

nodes, where they are removed from the network. By employing a

virtual control plane separate from the actual plane (where Interest

and Data Packets are transmitted), we can accurately measure and

track demand in the network, even in the presence of mechanisms

such as Interest aggregation.

The VIP joint caching and forwarding algorithm operates within

the VIP framework, and aims to control the flow of VIPs in the

virtual plane to achieve optimal network load balancing, thereby

maximizing the demand rate that can be satisfied by the network.

Forwarding in the virtual plane applies the backpressure algorithm

to VIP counts and allocates VIP transmissions to minimize VIP

count differences on each link. Caching in the virtual plane aims to

cache the objects with the highest VIP counts, subject to the cache

capacities of nodes. In this way, the algorithm efficiently drives

VIPs toward data source and caching nodes, while ensuring that

demand does not build up in any part of the network. In the actual

plane, forwarding and caching strategies observe the flow of VIPs

resulting from the virtual plane algorithm and use this information

to make forwarding and caching decisions for Interest and Data

Packets. The operation of this algorithm, along with the mechanics

of the VIP framework, are illustrated in Figure 3. For further details

regarding the VIP framework and the VIP algorithm, please see [34].

In VIP-NDN-DPDK, VIP control state is maintained for a selected

set of data objects, named registered data objects, where each data

object consists of a set of chunks (equivalently, packets). In the CMS

application, for example, the data objects can be chosen to be the

most frequently requested blocks (determined via e.g. statistical

estimation methods). The names of these data objects are stored

in a hash table called the Name Map Table, which also stores the

mapping between chunk names and their corresponding data ob-

ject names. In the CMS application, for example, the Name Map

Table contains the mapping between file chunk names and the

corresponding block names (as mentioned in Section 2). The VIP al-

gorithm is only applied to these registered data objects while other

data objects are not cached and are forwarded using the default

forwarding strategy provided by the NDN-DPDK forwarder.

At each node, VIP-NDN-DPDK updates VIP counts for (regis-

tered) data objects in the virtual plane periodically, asynchronous

of other nodes. Specifically, starting from the launch of VIP-NDN-

DPDK, each node runs its own timer, exchanges VIP control packets

with its neighbors every 𝑇 seconds, and updates VIP related statis-

tics for each data object according to Algorithm 2 in [34]. At the

start of each period, each node 𝑛 pulls a Data Packet containing the

VIP counts𝑉𝑘
𝑚 (𝑡) for all data objects 𝑘 from each neighboring node

𝑚, by sending an Interest Packet with the name "/ndn/vip/A" and a

N-DISE: NDN-based Data Distribution for Large-Scale Data-Intensive Science ICN ’22, September 19–21, 2022, Osaka, Japan

NDN‐DPDK

Virtuaplane
forwarding

Exchange
VIP control
information Virtual

plane
caching

Virtual plane

N
eighbor Actual plane

Actual plane
caching

Actual plane
forwarding

Actual
packets
forwarding

Control the actual plane

Cache hit/evict/insert

Update VIP control
information

Figure 3: VIP implementation diagram.

nonce. Any neighbor𝑚 sending back the VIP count information to

node 𝑛 also sends back an Interest Packet with the name "/ndn/vip
/B" and a nonce to retrieve a Data Packet containing the number of

VIPs to transmit (in the virtual plane) `𝑘𝑛𝑚 (𝑡) from node 𝑛 to node

𝑚 for data object 𝑘 in this period. All VIP control information is

stored in a SipHash-based hash table called VIP Table.
In order to quickly populate the virtual plane with VIPs to form

nontrivial VIP count gradients, we use an amplification factor 𝛼 ,

e.g. 𝛼 = 2, to scale up the consumer generated VIPs of data object

𝑘 at node 𝑛 from 𝐴𝑘
𝑛 (𝑡) to 𝛼𝐴𝑘

𝑛 (𝑡) [34]. That is, for each externally

arriving request at node 𝑛 for data object 𝑘 , we increment 𝑉𝑘
𝑛 (𝑡)

by 𝛼 .

Virtual plane caching decisions are also performed periodically.

For simplicity, we assume all registered data objects have the same

size in bits. At the start of the 𝑖th period, i.e. time 𝑡𝑖 , we update

the VIP counts as in [34] and decrease 𝑉𝑘
𝑛 (𝑡) by 𝑟𝑛 for all cached

data objects 𝑘 , where 𝑟𝑛 is the DRAM read out rate (in data objects

per time period). We then update the cache scores 𝐶𝑆𝑘𝑛 (𝑡) for all
data objects. In contrast to Algorithm 2 in [34], the cache score

𝐶𝑆𝑘𝑛 (𝑡) for data object 𝑘 and node 𝑛 is implemented as the expo-

nentially weighted cumulative received VIPs: 𝐶𝑆𝑘𝑛 (𝑡𝑖) = 𝐶𝑆𝑘𝑛 (𝑡𝑖−1)
𝑒𝑥𝑝 (−𝛽 ∗ (𝑡𝑖 − 𝑡𝑖−1))+𝑅𝑘𝑛 (𝑡𝑖), where 𝛽 is a parameter chosen empir-

ically, e.g. 𝛽 = 0.000015, and 𝑅𝑘𝑛 (𝑡𝑖) is the number of VIPs received

at node 𝑛 for data object 𝑘 from time 𝑡𝑖−1 to 𝑡𝑖 .
In the actual plane, we forward Interest Packets of data object𝑘 at

node 𝑛 to the neighboring node𝑚 with the maximum exponentially

weighted cumulative VIP sending rate for data object 𝑘 from node

𝑛: â𝑘𝑛,𝑚 (𝑡𝑖) = â𝑘𝑛,𝑚 (𝑡𝑖−1) 𝑒𝑥𝑝 (−𝛽 ∗ (𝑡𝑖 − 𝑡𝑖−1)) + a𝑘𝑛,𝑚 (𝑡𝑖), where
a𝑘𝑛,𝑚 (𝑡𝑖) is the number of VIPs sent from 𝑛 to𝑚 in the time period

from 𝑡𝑖−1 to 𝑡𝑖 .
The VIP algorithm requires all chunks of a data object to be

forwarded and cached together. To achieve this, we implement a

forwarding direction lock with an associated timer. Initially, the

forwarding directions for all data objects are unlocked. For each

arriving Interest Packet for data object 𝑘 arriving to a forwarder

𝑛, if the forwarding direction for data object 𝑘 is unlocked, the for-

warder 𝑛 chooses a new forwarding direction for 𝑘 corresponding

to the maximum exponentially weighted cumulative VIP sending

rate for data object 𝑘 from node 𝑛, as described in the previous

paragraph. At the same time, forwarder 𝑛 starts a timer with an

expiration sufficiently long to send the entire Interest Packet at the

corresponding link rate. Otherwise if the forwarding direction for

data object 𝑘 is locked, the forwarder restarts the corresponding

timer with the same expiration, and forwards the Interest in the

previously stored direction.

In the Content Store (CS) of the actual plane, the VIP algorithm

caches only the registered data objects. The objective of the caching

policy is to maximize the total cache score of the cached data ob-

jects, as described in detail in Algorithm 2 of [34]. While the original

NDN-DPDK controls cache space at the chunk level, the VIP al-

gorithm controls cache space at data object level. To achieve the

latter without changing the basic CS framework of NDN-DPDK,

we implement a hash table called the CS-VIP table. When a given

forwarder decides to cache a data object, it inserts the name of the

data object into the CS-VIP table and maps the name to a list of

names for all the data chunks belonging to the data object (which

arrives to the forwarder since Interest Packets for all chunks of a

given data object are forwarded in the same direction). When the

forwarder evicts a data object, it uses the CS-VIP table to evict all

data chunks belonging to the data object.

4 WIDE AREA NETWORK TESTBED
In order to evaluate the N-DISE system in a real-world wide area

network (WAN) setting, we build a high-bandwidth WAN testbed

that includes 7 high-performance servers. The testbed spans 5 sites:

Massachusetts Green High Performance Computing Center (MGH-

PCC), Caltech, StarLight Chicago, UCLA, and Tennessee Tech. The

MGHPCC server is owned by the Northeastern University group.

The Caltech and StarLight sites host two servers each, while all

other sites have one. Each of these servers is equippedwith high-end

Intel Xeon or AMD EPYC CPUs to take advantage of modern ar-

chitectural features, large amounts of memory ranging from 96 GB

up to 512 GB, large pools of both HDD and NVMe SSD storage as

well as Mellanox ConnectX series of network interface cards (NICs)

supporting 100GbE. In general, our hardware choices are guided

by the list of hardware known to perform well with DPDK and

NDN-DPDK [20, 17].

The topology of the testbed and the connectivity among sites are

depicted in Figure 4, which shows the maximum theoretical band-

width and the measured round trip time (RTT) of each link. Note

that the servers at the Northeastern (MGHPCC) and the Caltech

sites are locally connected via 100GbE while those at the StarLight

site are connected via 40GbE.

All servers in the testbed are connected by tagged VLANs with

support from CENIC, NOC, Internet2, and individual server sites.

For these connections, we attempted to allocate capacities up to

the maximum bandwidth limits of the underlying links (as shown

in Figure 4). However, the results fell short of this goal due to

various issues such as the lack of quality of service (QoS) guarantees,

unexpected traffic interruptions, traffic blocking from unknown

middleboxes, server tuning problems, and the lack of high-speed

switches. In our measurements using iperf3, the capacity of the

MGHPCC–StarLight link was reported as only 16 Gbps and the

capacity of the StarLight1–Caltech1 link was reported as 31 Gbps.

5 EXPERIMENTAL RESULTS
We evaluate the performance of the N-DISE system by running

several experiments over the WAN testbed described in Section 4.

ICN ’22, September 19–21, 2022, Osaka, Japan Wu et al.

Caltech1 Caltech2

UCLA

Northeastern/
MGHPCC

Tennessee
TechStarlight1

Starlight2

70 m
s

60 ms

26 m
s

10 Gbps link
40 Gbps link
100 Gbps link

Figure 4: Topology of the WAN testbed. The link capacities
are shown in the diagram. The RTTs are shown along the
connections.

In this section, we first discuss the results of a throughput test

conducted over the testbed. We then discuss the impact of VIP joint

caching and forwarding on system performance.

5.1 Throughput Evaluation
We conduct a throughput test between Caltech1 (request node)

and StarLight1 (server node) to demonstrate the baseline poten-

tial of N-DISE. We report results on six scenarios with different

numbers (6, 9, 12) of concurrently running consumer applications

at the request node (Caltech1), with and without caching enabled

at the server node (StarLight1). For each scenario, the test is run

for 10 minutes. Note that caching is disabled at Caltech1 in all sce-

narios. While we employ 3 forwarding threads for the scenarios

with 6 and 9 consumers, we add another forwarding thread for

the 12-consumer scenario. Each consumer application requests a

particular file repeatedly for the duration of the test and measures

the throughput for each file transmission. Only the data payload

of transmissions is considered for these measurements, the over-

head of the packet header being small compared to the payload.

Immediately before this test, the IP throughput over this path was

measured to be 31.8 Gbps using iperf3, which serves as a reference

point for our results.

Figure 5 shows the average throughput (over 10minutes) achieved

in each scenario in our test. Note that for each scenario, the through-

put value is aggregated across all consumer applications. We can

easily see that by increasing the number of consumers, we extract

more throughput from our network: the throughput is increased by

43% going from 6 to 9 consumers, and by 71% going from 6 to 12.

This improvement is sub-linear however, as the throughput per con-

sumer application slightly decreases with an increasing number of

consumer applications, since we approach the capacity of the path.

The effects of enabling caching at the server node are also seen: a

30%, 60% and 68% increase in throughput is achieved with 6, 9 and

12 consumers respectively. Finally, it should be noted that while

6C/3F (NC) 6C/3F 9C/3F (NC) 9C/3F 12C/4F (NC) 12C/4F0

5

10

15

20

25

Th
ro

ug
hp

ut
 (G

bp
s)

11.8

15.32
13.72

22.02

15.59

26.26

Figure 5: Average throughput from Caltech1 to StarLight1.
On the x-axis, "𝑋C/𝑌F" denotes a test with 𝑋 consumers and
𝑌 forwarding threads. “(NC)” indicates that the result is from
a no-cache test, otherwise the result is from a test with files
cached at the server node (StarLight1).

Figure 5 shows average throughput values, the peak throughput

value achieved during the experiment was 31.14 Gbps.

5.2 VIP Caching and Forwarding Evaluation
We evaluate the performance of the VIP algorithm over the service

network and multi-path network topologies shown in Figure 6. The

service network consists of two consumer nodes, at UCLA and

StarLight respectively, two forwarder nodes, at Northeastern Uni-

versity (MGHPCC) and Tennessee Tech respectively, and one server

node at Caltech. The multi-path network has two consumer nodes,

at Northeastern University (MGHPCC) and Tennessee Tech respec-

tively, one server node at Caltech, and two paths going through the

forwarder nodes at UCLA and Tennessee Tech.

Caltech2

UCLA

NEU/
MGHPCC

Tennessee
Tech

Producerconsumer1

forwarder

consumer2
& forwarder

Test3: multipath

Caltech2

UCLA
NEU/

MGHPCC
Tennessee

Tech

Starlight1

consumer

consumer

forwarder
forwarder producer

Figure 6: Network topologies used in the tests: service net-
work topology (top), multi-path topology (bottom).

For this performance evaluation, requests are generated for a

catalog of 30 registered data objects, each 4 GB in size, which are

randomly generated files with CMS file names. In both the ser-

vice and multipath network topologies, each forwarder is allocated

20 GB of cache space, which enables the caching of 5 data objects.
2

2
Due to cache capacity limits, only one block can be cached at each node. We therefore

run the VIP caching test at the file level. In this case, each file is considered as a whole

N-DISE: NDN-based Data Distribution for Large-Scale Data-Intensive Science ICN ’22, September 19–21, 2022, Osaka, Japan

At each request node, we launch one NDNc consumer applica-

tion. The consumer applications use a fixed window of 8192 packets

and a 2-second retransmission timeout (RTO). The window size is

chosen according to the bandwidth delay product without caching

and is fine tuned to obtain the optimal throughput. The RTO is

chosen according to the low-loss characteristics of the wireline

testbed. Each consumer application requests data objects sequen-

tially (where the next request is transmitted upon receipt of the

previous data response), where each requested data object is ran-

domly and independently chosen from the catalog according to a

Zipf distribution with parameter 1. The latter distribution is esti-

mated from the LHC request pattern data presented in Figure 1.

We conduct the test in the service topology for a duration of

1.5 hours and calculate the time-averaged total throughput and

average packet delay every 30 minutes. The total throughput is

defined as the total number of Data Packet bits retrieved at the

consumer nodes (UCLA and StarLight1) from the producer node

(Caltech2) or from any of the caching nodes, divided by the length

of each test period (i.e. 30×60 = 1800 seconds). The packet delay

is defined as the difference between the fulfillment time (i.e., time

of arrival of the requested Data Packet) and the creation time of

the Interest Packet request. The average delay is defined as the

packet delay averaged over all fulfilled Interest Packet requests at

the consumer nodes (UCLA and StarLight1) over the testing period

(30 minutes).

We investigate the performance of 3 different caching policies (no

caching, VIP, and adaptive replacement cache (ARC) [14], which is

improved from LRU) and track the cache contents at the forwarder

nodes. Note that forwarding is fixed in the service topology.

For VIP caching in the service topology, we use a 3-second time

slot and a VIP count amplification factor of 1, as described in sec-

tion 3.2. The VIP time slot length is chosen to be large enough so

that each node can build up a reasonably large VIP queue size for

every data type in each time slot. The amplification factor poten-

tially allows VIP counts to build up more quickly during the initial

transient period. We use small amplification factor and VIP time

slot length here since the service topology gathers all request flows

into the same path, implying we can readily obtain reasonably large

VIP queue sizes. In the case where the network does not generate

enough VIPs in each time slot, we have the option of choosing

larger amplification factor and VIP time slot length, as we do in the

following multi-path topology test.

The results show that the cache contents chosen by VIP at each

forwarder node are almost always optimal. The first forwarder (at

Northeastern/MGHPCC) always caches the 5 most popular files in

the last 30 minutes. The second forwarder (at Tennessee Tech) al-

most always caches files with popularity ranking 5 through 11. This

caching distribution leads to the VIP algorithm outperforming the

ARC algorithm, achieving both higher throughput and lower delay

per packet, at both the StarLight and UCLA servers. At StarLight,

the results during the last 30 minutes (in the format 〈throughput in
Gbps, delay in ms〉) are as follows: nocache 〈2.7, 155.4〉; ARC 〈3.1,
87.5〉; VIP 〈3.8, 83.0〉. At UCLA, the results are as follows: nocache

block, and the file name is mapped to an artificial block name by the name mapping

table.

〈2.2, 198.3〉; ARC 〈2.2, 139.7〉; VIP 〈2.6, 138.4〉. The performance

comparison on throughput and delay is shown in Figure 7.

5.0 4.9 4.95.3 5.3 5.46.2 6.0 6.3

0.0

2.0

4.0

6.0

8.0

0‐30 30‐60 60‐90

th
ro
ug
hp

ut
/G

bp
s

time(minutes)

Throughput over Time

nocache arc vip

(a) Total throughput of the service network test over time.

174.0 171.6 173.9

115.5 111.8 109.0112.1 110.2 105.4

0.0

50.0

100.0

150.0

200.0

0‐30 30‐60 60‐90

de
la
y/
m
s

time(minutes)

Delay over Time

nocache arc vip

(b) Average packet delay of the service network test over time.

Figure 7: Total throughput and average packet delay for the
service network test over time.

We next conduct a test over the multipath network topology

shown in Figure 6. For the multipath topology, caching and forward-

ing must be jointly designed for optimal performance. In this test,

we have request nodes at Northeastern (MGHPCC) and Tennessee

Tech, each running one consumer application.

We test three algorithms: round robin paired with ARC, fast route

paired with ARC, and VIP. The round robin forwarding strategy

chooses the next forwarding hop by sequentially looping through

the interfaces in the Forwarding Information Base (FIB) entry cor-

responding to the requested data object. Under the fast route for-

warding strategy, any given forwarder multicasts the first Interest

to all possible next hops, observes which next hop replies first,

and forwards subsequent Interests to that hop. The forwarder then

periodically probes unused next hops, and switches to another next

hop if it has strictly lower delay than all others.

As before, we use a fixed window of 8192 packets and a retrans-

mission timeout of 2 seconds at the consumer applications. The

UCLA and Tennessee Tech servers can each cache up to 5 data

objects. The request process at each request node is the same as in

the service network test. For the multi-path test, the VIP algorithm

uses a 1 minute time slot length, and a VIP count amplification

factor of 2. Note that we use larger VIP time slot length and VIP

count amplification factor for this test as compared with the ser-

vice topology test. This is because the multi-path topology splits

requests between two paths, and we need to use sufficiently large

VIP count amplification factor and VIP time slot length to ensure

VIP queue sizes are reasonably large so that the VIP algorithm can

make accurate forwarding and caching choices. We run the test for

1.5 hours and record performance statistics every 30 minutes.

ICN ’22, September 19–21, 2022, Osaka, Japan Wu et al.

We run the test twice and report the averaged results for the

cache hit ratio, total throughput and average packet delay in Fig-

ures 8 and 9. A cache hit for a Data Packet (or equivalently data

chunk) is recorded when an Interest Packet reaches a node which

is not a data source node but which has the Data Packet in its cache.

The cache hit ratio is defined here as the total number of cache

hits at cache sites UCLA and Tennessee Tech divided by the total

number of Interest Packet requests arriving at those cache sites. The

total throughput and average packet delay are defined in the same

way as for the service topology test, with the consumer nodes now

being Northeastern and Tennessee Tech and the producer node

being Caltech2. The cache hit ratio during the last 30 minutes is

shown in Figure 8. The cache hit ratio of the VIP algorithm is seen to

be 10.1% larger than that for fast route paired with ARC, and 11.9%

larger than that for round robin paired with ARC. At Northeastern

(MGHPCC), the throughput and delay results during the last 30

minutes are as follows (in the format 〈throughput in Gbps, delay

in ms〉): round robin paired with ARC 〈3.4, 93.3〉; fast route paired
with ARC 〈3.1, 88.3〉; VIP 〈3.9, 83.4〉. At Tennessee Tech, the results
are as follows: round robin paired with ARC 〈3.7, 52.0〉; fast route
paired with ARC 〈3.9, 48.5〉; VIP 〈4.0, 38.7〉. In Figure 9, we show

that VIP simultaneously achieves the highest total throughput and

the smallest average packet delay.

47.9% 49.7%

59.8%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

round robin fast route VIP

cache_hit_ratio

Figure 8: Cache hit ratio in the multi-path test.

6 LESSONS LEARNED
The development and experimentation of N-DISE has pointed to

several important lessons, which we detail below.

Challenges in mapping application names to NDN names. As men-

tioned in Section 2, the naming structure of applications (e.g., CMS)

often does not correspond to the underlying hierarchical structure

of the data organization. This discrepancy presents difficulties in

directly translating application names to NDN names, the latter of

which must be designed for efficient network operation. To address

this issue, additional mappings must be developed to associate data

objects used by workflows (e.g., blocks of CMS data) with data units

directly used in network requests (e.g., files of CMS data).

Decoupling control-plane information from forwarding threads. For
network control algorithms like VIP, which require exchanging con-

trol information with neighboring nodes, transmission and parsing

of control packets may interrupt operations of forwarding threads.

7.2 7.2 7.1
6.8

7.1 7.0

7.7 7.8 7.8

6.0

6.5

7.0

7.5

8.0

0‐30 31‐60 61‐90

th
ro
ug
hp

ut
/G

bp
s

time(minutes)

Throughput over Time

rr_arc fr_arc vip

(a) Total throughput of the multi-path test over time.

68.8 67.6
71.9

69.7
65.7 66.365.4

60.9 60.8

55.0

60.0

65.0

70.0

75.0

0‐30 31‐60 61‐90
de

la
y/
m
s

time(minutes)

Delay over Time

rr_arc fr_arc vip

(b) Average packet delay of the multi-path test over time.

Figure 9: Total throughput and average packet delay for the
multi-path test over time. “fr” stands for fast route paired
with ARC algorithm; “rr” stands for round robin paired with
ARC algorithm.

This interruption may increase the queuing delay of Interest and

Data Packets in forwarding threads, especially when a node has

many neighbors. To avoid this problem, such algorithms can be

allocated dedicated threads where control information is generated

and parsed.

Impact of middleboxes on NDN-based protocols. Our experimenta-

tion over the WAN testbed revealed the disruptive effects of in-

termediary network devices, i.e. middleboxes [3], on the expected

behavior of NDN-based protocols. In particular, we observed several

cases where middleboxes were corrupting NDN packets in transit.

For instance, we found that some network switches can misidentify

the EtherType of an NDN packet as a bare VLAN tag and will thus

insert an extra Tag Protocol Identifier before the NDN EtherType.

The resulting Ethernet frame is no longer a valid NDN packet, caus-

ing the next NDN router on the path to drop all traffic coming

from the faulty middlebox. This problem occurred on several paths

traversing the StarLight site in Chicago. Checking every switch on

these paths to fix the issue at its source was not possible. In order to

address the problem, we used the Virtual Extensible LAN (VXLAN)

encapsulation protocol to tunnel the NDN packets over UDP/IP.

While this method hides NDN packets from the middleboxes and

prevents corruption, it also leads to reduced throughput.

N-DISE: NDN-based Data Distribution for Large-Scale Data-Intensive Science ICN ’22, September 19–21, 2022, Osaka, Japan

System-dependent configuration and tuning. To reduce deployment

complexity in our WAN setting, we used Docker containers to pack-

age the forwarder, consumer and producer applications. While this

is helpful to an extent, such deployments inevitably interact with di-

verse server equipment, operating systems and network configura-

tions. Therefore, substantial manual effort is still required in config-

uring drivers, ensuring proper usage, and integrating these software

stacks into workflows. Through our experiments, we learned that

not all components operate well with each other, so we needed to

understand their interactions well and tune them manually, which

entailed a large amount of trial-and-error experience.

7 CONCLUSION AND FUTUREWORK
This paper describes the development and prototyping of N-DISE,

the first high-performance NDN-based integrated data delivery

system for some of the world’s largest data- and network-intensive

science programs. We have shown that the system successfully

combines a NDN naming scheme, new consumer and producer

applications, jointly optimal caching and forwarding algorithms,

integrated with the high-performance NDN-DPDK forwarder, to

achieve leading throughput (around 31 Gbps) and delay perfor-

mance in real-world WAN settings.

In spite of the impressive performance landmarks established

by N-DISE thus far, we believe that significant potential perfor-

mance gains remain, and can be realized by pursuing important

innovations on multiple fronts. We summarize some of these future

research directions below.

Integration of NDN with the mainstream data distribution systems at
the LHC experiments. Our goal is to integrate NDN with the main-

stream data distribution systems at the LHC experiments, starting

with CMS. One major component of this project is an NDN-based

XRootD Open Storage System (OSS) plugin [6, 5], instrumented

with an accelerated packet forwarder, able to deliver data at high

speeds. Learning from our previous experience of integrating NDN

at the CMS [12], our plan is to further improve the performance

capabilities of both the producer and consumer applications de-

scribed in Section 3 and to embed the latter in an XRootD OSS

plugin. The plugin is a C++ dynamic library, loaded at run-time

by the framework, that provides file system implementations for

different types of storage (CephFS, HDFS, POSIX) by extending

a C++ interface that replicates all related system calls (e.g., open,

close, read, fstat). Both applications will have a protocol in place to

encode and decode every filesystem call into NDN names and attach

them to Interest and Data Packets in order to serve the higher level

of the XRootD system. Users at the LHC write and run their own

scientific applications developed using the CMS Software Compo-

nents (CMSSW) [4]. Once submitted as jobs in the cluster at one

of the partner sites of the experiment, these applications request

byte-ranges within the events in HEP data files by calling the local

running XRootD service which uses the OSS plugin to natively

serve any kind of data.

Multi-threaded forwarding and hierarchical caching with VIP. We

plan to carry out a significant extension of the VIP joint caching and

forwarding algorithm, addressing two limitations of the current im-

plementation. First, our current implementation of the algorithm is

single-threaded, meaning its performance is limited by the process-

ing power of a single CPU core (or hyperthread). In order to achieve

higher throughput, we will develop a multi-threaded implementa-

tion, which will synergize with the development of multi-threaded

consumer and producer applications. This implementation will

allow each forwarding thread to maintain its own VIP control in-

formation, and will balance traffic flows among forwarder threads

based on the VIP control information.

Second, the current implementation can only cache data in

DRAM, which severely limits cache spaces we can allocate. As

an example of potential cache size requirements, we estimate that a

10 TB cache is needed to cover the most popular 400 blocks compos-

ing roughly 80% of CMS requests at the block level over a typical

two-month period at Caltech. DRAM alone cannot support such

large caches. Therefore, we will extend the algorithm to enable hi-

erarchical caching that incorporates various types of memory and

storage, including DRAM and NVMe SSDs. The extended algorithm

will jointly optimize caching and forwarding while taking into ac-

count the read and write speeds of different hardware elements,

as well as the costs of migrating data from one type of cache to

another in the hierarchy.

Congestion control based on network feedback. NDN’s new features

of multipath forwarding and in-network caching can greatly im-

prove effective network throughput for end users. At the same time,

they also make consumers’ data fetching delay difficult to estimate,

which invalidates the well established congestion control solutions

which operate over end-to-end connections across a single path. Ex-

tensive simulation experimentation has taught us that congestion

control approaches purely based on end points measurement do not

perform well. Thus, future investigations should look into the direc-

tion of making use of network provided feedback. We are currently

working on an approach which lets network routers attach their

packet queue length information to Data Packets, enabling down

stream routers and end consumers to estimate the bottleneck capac-

ity along upstream paths towards data producers, and adjust their

Interest Packet forwarding rates accordingly. Preliminary results

show that this new approach can effectively control congestion

while maintaining high data throughput in the presence of caching

and multi-path forwarding [30].

FPGA acceleration. While FPGAs have been used for name lookup

in NDN, the challenges faced by NDN-DPDK are unique due to

the multi-threaded architecture of the forwarder. For instance, a

bottleneck in the forwarder occurs in the thread that handles input.

Upon receiving an Interest Packet, the input thread assigns it to

a forwarding thread by looking up the hash value of the name

prefixes in a data structure called the Name Dispatch Table (NDT).

Depending on the size of the NDT and the position of the name

component used for indexing, this lookup can become a bottleneck.

In addition, if the named identifier has a low length to components

ratio, hashing can involve significant delay. To address this bot-

tleneck, in our implementation, we will download the NDT to an

FPGA-assisted NIC and use the FPGA to accelerate hashing and

lookups in the NDT. Preliminary experimental results on a local

testbed show a 4x improvement in throughput over the current

ICN ’22, September 19–21, 2022, Osaka, Japan Wu et al.

CPU implementation. Moving forward, we will experimentally eval-

uate FPGA acceleration of the NDN-DPDK forwarder on the WAN

testbed.

Integration with genomics workflows. Learning from our experience

with CMS, we will pursue integration of our system and protocols

into the genomics use case. In preliminary work, we have utilized

our software stack to integrate NDN-based operations with ge-

nomics workflows. Specifically, we utilized the NDN-DPDK file

server to publish genomics data in containers, each of which held a

number of files based on their namespace. We then deployed these

containers using Kubernetes on Google Cloud to create a flexible

data lake that can be extended on demand. On the client side, we

used the NDNc consumer to integrate NDN-based data retrieval to

contemporary workflows.We plan to further integrate the tools and

framework developed as part of this project into genomics work-

flows. These will include upgraded clients with congestion control

algorithms and the ability to utilize multiple clients to retrieve data

in parallel.

Data integrity and provenance. Although scientific data may not

have strict confidentiality requirements, it is important to ensure

the data’s authenticity. We will use NDN to implement data origin

authentication. To make this feasible for large data volumes, we will

adopt an approach based on manifests, where each data producer

first computes the hash of each data segment, and then signs col-

lections of hashes (the manifest) instead of the raw data itself. The

consumers can retrieve the signed hashes in parallel with fetching

the raw data, then use the manifest to verify the data authenticity.

Integration with SENSE [15]. We will integrate the N-DISE system

with the SENSE platform, which provides dynamic multi-domain

circuits with bandwidth guarantees and allows applications to inter-

act with the network and cooperatively make scheduling and traffic

engineering decisions. We will leverage the layer 2 and 3 overlay

capability of SENSE as a long-term pathway for NDN to move from

prototyping and integration to production use. We will also actively

leverage P4 programmability available in the SENSE testbed. Specif-

ically, we will leverage the use of P4, a new source-based routing

approach, and the use of the Qualcomm GradientGraph decision

support software to provide agile path selection.

ACKNOWLEDGMENTS
This work is supported in part by National Science Foundation

grants OAC-2019012, OAC-1659403, OAC-2019163, andOAC-2126148.

DISCLAIMER
Any mention of commercial products or reference to commercial

organizations is for information only; it does not imply recommen-

dation or endorsement by NIST, nor does it imply that the products

mentioned are necessarily the best available for the purpose.

REFERENCES
[1] The Fast Data Project (FD.io). 2022. Shared memory packet interface (memif)

library. (2022). https://s3-docs.fd.io/vpp/22.06/interfacing/libmemif/index.htm

l.

[2] Giorgio Apollinari, O Brüning, Tatsushi Nakamoto, and Lucio Rossi. 2017. High

luminosity large hadron collider hl-lhc. arXiv preprint arXiv:1705.08830.

[3] B. Carpenter and S. Brim. 2002. Middleboxes: Taxonomy and Issues. RFC 3234.

RFC Editor, (Feb. 2002). http://www.rfc-editor.org/rfc/rfc3234.txt.

[4] CERN. 2022. CMS software components. (2022). Retrieved May 25, 2022 from

https://cms-sw.github.io/.

[5] CERN. 2022. Xrootd: open file system & open storage system configuration

reference. (2022). Retrieved May 25, 2022 from https://xrootd.slac.stanford.edu

/doc/dev53/ofs_config.htm.

[6] Alvise Dorigo, P. Elmer, Fabrizio Furano, and A. Hanushevsky. 2005. Xrootd - a

highly scalable architecture for data access.WSEAS Transactions on Computers,
4, (Apr. 2005), 348–353.

[7] 2018. Earth BioGenome Project Aims to Sequence DNA From All Complex Life.

[Online; accessed 20. Jan. 2020]. (Apr. 2018). https://www.ucdavis.edu/news/ea

rth-biogenome-project-aims-sequence-dna-all-complex-life.

[8] 2018. Earth BioGenome Project Aims to Sequence DNA From All Complex Life.

[Online; accessed 20. Jan. 2020]. (Apr. 2018). https://www.ucdavis.edu/news/ea

rth-biogenome-project-aims-sequence-dna-all-complex-life.

[9] Chengyu Fan, Susmit Shannigrahi, SteveDiBenedetto, CatherineOlschanowsky,

Christos Papadopoulos, and Harvey Newman. 2015. Managing scientific data

with named data networking. In Proceedings of the Fifth International Workshop
on Network-Aware Data Management, 1–7.

[10] 2022. Graphql: a query language for your api. (2022). https://graphql.org/.

[11] Igor V Grigoriev et al. 2011. The genome portal of the department of energy

joint genome institute. Nucleic acids research, 40, D1, D26–D32.
[12] Cǎtǎlin Iordache, Ran Liu, Justas Balcas, Raimondas Šrivinskas, Yuanhao Wu,

Chengyu Fan, Susmit Shannigrahi, Harvey Newman, and Edmund Yeh. 2020.

Named data networking based file access for xrootd. In EPJ Web of Conferences.
Vol. 245. EDP Sciences, 04018.

[13] Elliot J Lefkowitz, Donald M Dempsey, Robert Curtis Hendrickson, Richard

J Orton, Stuart G Siddell, and Donald B Smith. 2017. Virus taxonomy: the

database of the international committee on taxonomy of viruses (ictv). Nucleic
Acids Research, 46, D1, D708–D717.

[14] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: a Self-Tuning, low

overhead replacement cache. In 2nd USENIX Conference on File and Storage
Technologies (FAST 03). USENIX Association, San Francisco, CA, (Mar. 2003).

https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-r

eplacement-cache.

[15] Inder Monga. 2016. SENSE Project. https://www.es.net/assets/pubs_presos

/SENSE-Thomas-20160217-on-Web.pdf.

[16] N-DISE. 2022. NDNc: a lightweight integration of ndn-cxx with ndn-dpdk to

achieve high throughput performance in scientific applications. (2022). https:

//github.com/cmscaltech/sandie-ndn/tree/master/NDNc.

[17] NIST. 2022. Hardware Compatible with NDN-DPDK. (2022). Retrieved Aug. 26,

2022 from https://github.com/usnistgov/ndn-dpdk/blob/5bc92be0f3706142806

dd6a52c6ac7ec042c2c8c/docs/hardware.md.

[18] Catherine Olschanowsky, Susmit Shannigrahi, and Christos Papadopoulos.

2014. Supporting climate research using named data networking. In 2014 IEEE
20th International Workshop on Local & Metropolitan Area Networks (LANMAN).
IEEE, 1–6.

[19] Giovanni Petrucciani, Andrea Rizzi, Carl Vuosalo, CMS Collaboration, et al.

2015. Mini-AOD: a new analysis data format for CMS. In Journal of Physics:
Conference Series number 7. Vol. 664. IOP Publishing, 072052.

[20] DPDK Project. 2022. DPDK supported hardware. (2022). Retrieved Jan. 28, 2022

from https://core.dpdk.org/supported.

[21] The Named Data Networking Project. 2022. ndn-cxx: NDN C++ library with

eXperimental eXtensions. (2022). https://named-data.net/doc/ndn-cxx/current

/.

[22] The Hutch Report. 2020. Genomics Report. [Online; accessed 20. Jan. 2020].

(Jan. 2020). https://www.preoncapital.com/wp- content/uploads/2018/06

/THR_Genomics.pdf.

[23] Andrea Rizzi, Giovanni Petrucciani, and Marco Peruzzi. 2019. A further re-

duction in CMS event data for analysis: the nanoaod format. In EPJ Web of
Conferences. Vol. 214. EDP Sciences, 06021.

[24] Lucio Rossi and Oliver Brüning. 2012. High luminosity large hadron collider:

A description for the European strategy preparatory group. Tech. rep.

[25] Susmit Shannigrahi, Chengyu Fan, and Christos Papadopoulos. 2017. Request

aggregation, caching, and forwarding strategies for improving large climate

data distribution with ndn: a case study. In Proceedings of the 4th ACM Confer-
ence on Information-Centric Networking, 54–65.

[26] Susmit Shannigrahi, Chengyu Fan, Christos Papadopoulos, and Alex Feltus.

2018. Ndn-sci for managing large scale genomics data. In Proceedings of the 5th
ACM Conference on Information-Centric Networking, 204–205.

[27] Susmit Shannigrahi, Chengyu Fan, and Craig Partridge. 2020. What’s in a

name? naming big science data in named data networking. In Proceedings of the
7th ACM Conference on Information-Centric Networking (ICN ’20). Association

for Computing Machinery, Virtual Event, Canada, 12–23. isbn: 9781450380409.

doi: 10.1145/3405656.3418717.

https://s3-docs.fd.io/vpp/22.06/interfacing/libmemif/index.html
https://s3-docs.fd.io/vpp/22.06/interfacing/libmemif/index.html
http://www.rfc-editor.org/rfc/rfc3234.txt
https://cms-sw.github.io/
https://xrootd.slac.stanford.edu/doc/dev53/ofs_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/ofs_config.htm
https://www.ucdavis.edu/news/earth-biogenome-project-aims-sequence-dna-all-complex-life
https://www.ucdavis.edu/news/earth-biogenome-project-aims-sequence-dna-all-complex-life
https://www.ucdavis.edu/news/earth-biogenome-project-aims-sequence-dna-all-complex-life
https://www.ucdavis.edu/news/earth-biogenome-project-aims-sequence-dna-all-complex-life
https://graphql.org/
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache
https://www.es.net/assets/pubs_presos/SENSE-Thomas-20160217-on-Web.pdf
https://www.es.net/assets/pubs_presos/SENSE-Thomas-20160217-on-Web.pdf
https://github.com/cmscaltech/sandie-ndn/tree/master/NDNc
https://github.com/cmscaltech/sandie-ndn/tree/master/NDNc
https://github.com/usnistgov/ndn-dpdk/blob/5bc92be0f3706142806dd6a52c6ac7ec042c2c8c/docs/hardware.md
https://github.com/usnistgov/ndn-dpdk/blob/5bc92be0f3706142806dd6a52c6ac7ec042c2c8c/docs/hardware.md
https://core.dpdk.org/supported
https://named-data.net/doc/ndn-cxx/current/
https://named-data.net/doc/ndn-cxx/current/
https://www.preoncapital.com/wp-content/uploads/2018/06/THR_Genomics.pdf
https://www.preoncapital.com/wp-content/uploads/2018/06/THR_Genomics.pdf
https://doi.org/10.1145/3405656.3418717

N-DISE: NDN-based Data Distribution for Large-Scale Data-Intensive Science ICN ’22, September 19–21, 2022, Osaka, Japan

[28] Susmit Shannigrahi et al. 2015. Named data networking in climate research

and hep applications. In Journal of Physics: Conference Series number 5. Vol. 664.

IOP Publishing, 052033.

[29] Junxiao Shi, Davide Pesavento, and Lotfi Benmohamed. 2020. NDN-DPDK:

NDN forwarding at 100 Gbps on commodity hardware. In Proceedings of the
7th ACM Conference on Information-Centric Networking, 30–40.

[30] Sichen Song and Lixia Zhang. 2022. Effective NDNCongestion Control Based on

Queue Size Feedback. In Proceedings of the 9th ACM Conference on Information-
Centric Networking.

[31] Dongmei Tian, Pei Wang, Bixia Tang, Xufei Teng, Cuiping Li, Xiaonan Liu,

Dong Zou, Shuhui Song, and Zhang Zhang. 2019. Gwas atlas: a curated resource

of genome-wide variant-trait associations in plants and animals. Nucleic Acids
Research, 48, D1, D927–D932.

[32] Elisabeth Veeckman, Tom Ruttink, and Klaas Vandepoele. 2016. Are we there

yet? reliably estimating the completeness of plant genome sequences. The Plant
Cell, 28, 8, 1759–1768.

[33] Björn C Willige, Joanne Chory, and Marco Bürger. 2018. Next generation of

plant-associated bacterial genome data. Cell host & microbe, 24, 1, 10–11.
[34] Edmund Yeh, Tracey Ho, Ying Cui, Michael Burd, Ran Liu, and Derek Leong.

2014. Vip: a framework for joint dynamic forwarding and caching in named

data networks. In Proceedings of the 1st ACM Conference on Information-Centric
Networking, 117–126.

	Abstract
	1 Introduction
	2 Naming of LHC data
	3 Software Implementation
	3.1 NDNc Consumer and Producer
	3.2 VIP Joint Caching and Forwarding

	4 Wide Area Network Testbed
	5 Experimental Results
	5.1 Throughput Evaluation
	5.2 VIP Caching and Forwarding Evaluation

	6 Lessons Learned
	7 Conclusion and Future Work
	Acknowledgments

