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Environmental DNA reveals seasonal shifts and
potential interactions in a marine community
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Environmental DNA (eDNA) analysis allows the simultaneous examination of organisms

across multiple trophic levels and domains of life, providing critical information about the

complex biotic interactions related to ecosystem change. Here we used multilocus amplicon

sequencing of eDNA to survey biodiversity from an eighteen-month (2015–2016) time-series

of seawater samples from Monterey Bay, California. The resulting dataset encompasses 663

taxonomic groups (at Family or higher taxonomic rank) ranging from microorganisms to

mammals. We inferred changes in the composition of communities, revealing putative

interactions among taxa and identifying correlations between these communities and

environmental properties over time. Community network analysis provided evidence of

expected predator-prey relationships, trophic linkages, and seasonal shifts across all domains

of life. We conclude that eDNA-based analyses can provide detailed information about

marine ecosystem dynamics and identify sensitive biological indicators that can suggest

ecosystem changes and inform conservation strategies.
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Our ability to track changes in marine ecosystems is
hampered by an inability to simultaneously assess the
abundance and distribution of diverse organisms across

multiple trophic levels. Traditional marine biodiversity assess-
ments frequently focus on macro-organisms and are conducted
via visual and manual methods such as diver surveys, trawling,
acoustic techniques or aerial imagery1. More recently, global and
local surveys using genetic methods have been conducted to
explore single-celled communities, unveiling the vast diversity of
marine microbes2,3 and small eukaryotes4. However, exploring
the diversity and distribution of a broad swath of prokaryotic and
eukaryotic life forms in the world’s oceans remains a major
challenge, especially when examining interactions and co-
occurrences of taxa and trophic levels (i.e., microbes to mam-
mals) on the same temporal and spatial scales.

Amplicon sequencing of DNA derived from environmental
samples (often termed environmental DNA (eDNA) meta-
barcoding) is well established in the field of microbial ecology and
has more recently been applied to multicellular organisms5–7.
Examination of eDNA genetic sequences has emerged as a
method to infer co-occurrence patterns of organisms within an
ecosystem, across all domains of life simultaneously5,8,9, although
this is not common practice yet7. So far, these methods have been
used to provide essential information about the spatial distribu-
tion and temporal variability in single-celled organisms spanning
large areas in the world’s oceans2,4,10–13. However, a major goal is
to holistically explore complete biological communities, surveying
the diversity and distribution of single- and multi-cellular
organisms alongside environmental parameters to reveal the
interactions across community members and predict how whole
communities respond to environmental change.

Here, we analyse a time-series of eDNA metabarcoding data
to assess changes in the proportional abundance of taxa in a
marine setting, and to analyse linkages of organisms ranging
from microorganisms to mammals. This coordinated survey of
entire biotic communities using high-throughput sequencing of
multiple conserved genetic markers from eDNA elucidated
relationships between community dynamics and environ-
mental properties. This approach allowed us to test hypotheses
about the predicted association between the richness of taxa
and environmental variables, including sea surface tempera-
ture, chlorophyll a, and other key environmental and biotic
variables. Through network analysis, we found that groups of
co-occurring organisms spanning different trophic levels were
directly correlated to changes in environmental parameters,
providing insights into the underlying response of whole
communities to the environment and highlighting co-
occurrences and potential trophic interactions.

Results
Temporal community structure. We collected seawater samples
approximately bimonthly for 18 months (n= 8 time points, April
2015–December 2016) from a long-term monitoring station in
Monterey Bay National Marine Sanctuary (MBNMS), CA, USA
(Supplementary Fig. 1). Environmental variables (including water
column temperature, salinity, dissolved oxygen, chlorophyll a and
nitrate) were measured in situ or from seawater samples at all
sampling time points (see Methods). eDNA was concentrated
from seawater on membrane filters. Four genetic loci (16S ribo-
somal RNA (rRNA), 18S rRNA, cytochrome c oxidase I (COI),
and 12S rRNA) were amplified and sequenced (see Methods and
Supplementary Table 1 for details on laboratory and bioinfor-
matic analysis). Over 108 sequences were recovered after quality
control (see Methods, e.g., removal of negatives, Supplementary
Fig. 2), resulting in the identification of 663 taxonomic groups

(grouped and analysed at a Family or higher taxonomic level for
the purpose of this study, see Methods). The taxa identified
employed saprotrophic, autotrophic, mixotrophic and hetero-
trophic trophic strategies. Because amplification bias obscures the
relationship between organismal abundance and amplicon
abundance14 (see Methods), we created indices of abundance for
each annotated taxon, scaled from zero to one. This method
assumes that amplification bias arises from template–primer
interaction, and that for any given taxon-primer pair, this inter-
action is constant across samples, allowing us to infer relative
changes in abundance between different taxa15. When a taxon
was detected with multiple genetic loci, we averaged these indices
to create an ensemble index for that taxon. We then measured
pairwise correlations (Kendall’s tau) for taxon eDNA indices to
detect clusters of taxa with simultaneous changes in amplicon-
index abundance. We permutated a null model to correct our
false-discovery rate for multiple comparisons (Supplementary
Fig. 3 corrected significance threshold: tau= 0.70). Given our
focus on marine ecosystems, all instances of terrestrial organisms
that appeared on the taxon list were removed, although we
recognise that some terrestrial taxa have aquatic life cycle stages
and may be ecologically important. After removing terrestrial
taxa, 348 unique marine taxa remained, 274 (78%) of which were
agglomerated at the Family level, and otherwise pooled at a
higher taxonomic level (Order, Phylum, etc., see Methods).

To evaluate the changes in proportional abundance of the
community with time, we used weighted gene correlation
network analysis (WGCNA)16 of the amplicon abundance index
of each taxon. This identified clusters of taxa with similar trends
over time (Fig. 1a, b). The WGCNA builds a network with taxa
(nodes) linked (edges) to other taxa with similar trends17

(Supplementary Fig. 4, see Methods). Interconnected subnet-
works (communities) are identified from the main network,
representing collections of taxa from all domains of life and
trophic levels with strongly correlated shifts in proportional
abundance over time. The correlated changes may stem from
direct or indirect trophic interactions or from coincident
responses to environmental factors18.

We identified six subnetworks (based on the network analysis
for the whole dataset, see Methods) that represent different
communities and their changes with time (Fig. 1a, b and
Supplementary Fig. 4). Although representative taxa from each
subnetwork occurred at most time points, the subnetworks
reflected seasonal changes in the MBNMS community. The
eDNA observations on richness between spring/summer taxa
(orange, yellow, green subnetworks) were visibly distinguishable
from autumn/winter taxa (grey, blue, black) (Fig. 1a, b). All
subnetworks were correlated against environmental variables; for
example, the seasonality in taxon richness (Fig. 1b) reflects
significant correlations with lower chlorophyll a levels during
winter (grey subnetwork, r=−0.76, Spearman correlation p
value= 0.03) and higher sea surface temperatures during autumn
(blue subnetwork, r= 0.74, Spearman correlation p value= 0.04)
(Supplementary Figs. 5 and 6).

The absolute highest and lowest observed taxon richness (i.e.,
total number of taxa) occurred in December 2015 and December
2016, respectively, when the grey network was dominant. This
expansion/contraction of diversity within a single subnetwork
provides some insight as to how communities might respond to
interannual differences such as the above average sea surface
temperatures and changes in physical circulation in December
2015 due to a strong El Niño event (Supplementary Fig. 7), which
has been previously observed in eDNA studies19. Other studies in
this region have also reported changes in community structure
relative to other years during El Niño events, including
anomalous species richness, when taxa from warmer regions to
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the south and/or offshore, move north toward the central
California coast20.

Composition and temporal behaviour of subnetworks. We
expect taxa with strong trophic interactions to have highly cor-
related patterns of proportional amplicon abundance over time20.
To evaluate these trophic interactions, we assume that correla-
tions among taxa more than one trophic level apart are not direct,
with the exception of ecto- and endosymbiotic organisms. We
observe a few likely indirect connections among taxa, and a
variety of direct connections that suggest trophic interactions.

The dominant spring subnetworks of 2015 and 2016 (green
and yellow, respectively) contained most of the centric diatom
taxa (30% and 41%, respectively) in the highest proportional
abundances (Supplementary Fig. 8). These subnetworks were
associated with early seasonal upwelling and had the least diverse
autotrophic communities, albeit the most centric diatoms, which
are known to cause spring blooms in the region21. Typically in
MBNMS pennate diatoms appear after the centric diatoms21;
however, we found pennate diatom taxon richness distributed
equally across all subnetworks (and thus time), with greater
proportional abundances during spring and winter 2015
(Supplementary Fig. 8). The summer/autumn subnetworks
(orange and blue) contained a large fraction of all dinoflagellate
taxa (26% and 20.5%, respectively). This is expected for the latter
part of the upwelling season and the transition to non-upwelling
conditions21. However, during our sampling period, the grey
subnetwork (dominant in December 2015 and December 2016)
contained the highest fraction of dinoflagellates (35%), which is
consistent with minimal seasonal upwelling at that time and was
compounded in late 2015 by El Niño conditions, when winter sea
surface temperatures can be higher than average and more prone
to stratification22. In addition to high dinoflagellate abundance,
the proportional copepod abundance was also highest during
winter 2015 (Supplementary Fig. 8), representing 38% of the total
number of taxa at that time (grey subnetwork).

The autumn (blue) and winter (grey) subnetworks showed the
strongest correlations with environmental parameters. We focus
on these subnetworks to illustrate the relationship between
environmental conditions and putative ecological responses
(Supplementary Figs. 5 and 9). The dominant subnetwork in

autumn (blue) comprised a total of 81 taxa that were more
common when sea surface temperature was >14 °C (Fig. 2a–c and
Supplementary Fig. 7). The blue subnetwork contained phyto-
plankton taxa that can cause harmful algal blooms (e.g., the toxic
algal families Gonyaulacaceae and Prorocentraceae), which have
been observed previously as a response to positive temperature
anomalies in the MBNMS23,24. Balaenopteridae (sequences
identified as humpback whale; Megaptera novaeangliae), com-
monly observed in MBNMS, was a top predator and the most
highly connected taxon (most central node, see Methods) within
the blue subnetwork (Fig. 2a). Krill (Family Euphausiidae), a
common prey of humpback whales25, was classified within the
same subnetwork, however its correlation to Balaenopteridae was
not strong (Fig. 2, Supplementary Figs. 10 and 11).

The dominant winter (grey) subnetwork was comprised of 114
taxa and positively associated with low chlorophyll a (Fig. 2d–f).
Within this subnetwork we observed likely direct connections
among taxa with simultaneously high amplicon-abundance
indices, i.e., Otariidae (sequences identified as California sea lion;
Zalophus californianus; top predator) and Carangidae (sequences
identified Pacific jack mackerel; Trachurus symmetricus; next
highest trophic level). California sea lions prey upon jacks
including the Pacific jack mackerel, which occur in MBNMS26,27.
Jacks in turn often feed upon planktonic copepods28, and indeed,
copepods from the grey network (especially Metridinidae) were
strongly correlated to jacks (r= 0.80, Spearman correlation p
value < 0.05). The grey subnetwork contained several taxa with
parasitic life histories, including the Family Syndiniaceae
(dinoflagellates), which are parasitic to a broad range of hosts,
including crustacea, radiolaria and fish, which were also present
in the grey subnetwork (Supplementary Figs. 8, 10, and 11). Most
radiolarians (90%), including all celestine (Acantharea) forms,
were associated with the winter 2015 (grey) subnetwork. Siliceous
(Polycystinea) and celestine radiolarians can graze on other
plankton and some taxa have dinoflagellate, hapytophyte or
prymnesiophyte endosymbionts, which may allow members of
this group to dominate during periods when diatoms are less
prevalent, as seen within the winter network. Therefore, this
approach of eDNA metabarcoding combined with network
analysis deciphers subnetworks of co-occurring taxa that we
can use to discover putative ecological interactions.
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Fig. 1 Weighted gene correlation network analysis (WGCNA) of eDNA data correlated with environmental variables. a Dendrogram based on clustering
of changes in abundance indices of all taxa using Kendall’s tau correlation coefficient (see Methods). The colours correspond to different subnetworks.
b Observed richness of taxa from each subnetwork, from Fig. 1a, over the sampling time points showing the highest accumulative richness in December
2015. The shaded areas represent the spring and autumn seasons and white represents the summer and winter seasons.
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Correspondence of networks with environmental shifts. The
blue (autumn) and grey (winter) subnetworks were associated
with high temperature and low chlorophyll a concentrations,
respectively, indicating coherent shifts in biological communities
associated with changes in environmental conditions. Within
these subnetworks, amplicon abundance indices (see Methods) of
constituent taxa were predictably correlated with the same cov-
ariates (Fig. 3a, e.g., most of the taxa from the winter subnetwork,
which was negatively correlated with chlorophyll a, were also
negatively correlated with dissolved oxygen).

In the autumn subnetwork, most of the taxa with the strongest
positive correlations with temperature are notably also the taxa
with the highest intra-subnetwork connectivity (see Methods)
and the highest subnetwork membership (i.e., highest sum of
subnetwork correlations to other taxa (or edge weights)
(Supplementary Table 3). For the autumn and winter subnet-
works, the correlation (Spearman r correlation coefficient) of
individual taxa to the environmental variable (temperature and
chlorophyll a, respectively), is significantly correlated with the
degree of connectedness of those taxa (i.e., the more connected a
taxa is, the more significantly it is correlated with the
environmental variable, Fig. 3b, c).

It has recently been shown that the degree of centrality can be
used to identify keystone taxa with 85% accuracy in microbial
studies29, although this has been met with some criticism30,31.
This predictive capability has not yet been empirically tested in
studies across trophic levels from microorganisms to mammals.
Amongst the most interconnected taxa (top 10%) and taxa
significantly correlated with temperature or chlorophyll a (Fig. 3b,
c, above dashed red line), we found representatives of all trophic
levels and across all domains of life. From the autumn (blue)
subnetwork, examples of top representatives of different trophic
groups include the Urechidae32 (polychaete), Rathkeidae (pro-
tist), and Planctomycetales (bacteria) (Supplementary Table 3).
These taxa represent a secondary consumer, primary consumer
and a saprotroph, respectively.

Within the winter (grey) subnetwork, examples of representa-
tives from the top 10% connected taxa are the Polycystinea
(radiolarian), Carangidae (jacks) and Thalassoarchaea (archaea),
representing a primary consumer, secondary consumer and a
mixotroph, respectively. The tertiary consumers in each subnet-
work (humpback whales and California sea lions) were also
among the 10% most highly connected taxa at ranks one and
four, respectively (Fig. 3 and Supplementary Table 3). The single
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grey subnetworks, upon which the taxa representations of panels (c) and (f) are chosen. The distribution of the trophic levels within each subnetwork is
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central hub taxa with the highest connectivity to other taxa within
the respective subnetworks were Balaenopteridae (humpback
whales) for the blue subnetwork and Rhodospirillaceae (proteo-
bacteria) for the grey subnetwork. These taxa were connected to a
total of 24 (29%) and 48 (42%) taxa within their respective
subnetworks. The difference of number of connected taxa
between the top ranked taxa in the two subnetworks is due to
the difference in numbers of taxa within that particular subnet-
work (blue: n= 81, grey: n= 114).

Having a quantifiable threshold for consistent identification
and validation of indicator or keystone taxa is important33, and
requires experimental evidence showing the impact of the
respective taxa on community function and composition.
Network interactions alone can show positive associations

between taxa that are unlikely to interact directly (e.g., Urechidae
(a sediment dweller) and humpback whales), and it is important
to keep in mind that such correlations are manifestly not
causation34. However, such networks of putative interactions
highlight fluctuations of taxa with their environment that may
have previously escaped notice, and thus may be powerful ways of
identifying novel organisms and community assemblages that
could indicate environmental changes and pioneer conservation
strategies, which would especially benefit from these types of
analyses at the species level (see Supplementary Fig. 11).

Discussion
In light of global climate change and increasing uses of ocean
spaces and resources, monitoring marine biodiversity has
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emerged as a fundamental requirement to define conservation
priorities35. Most marine time-series studies have focused on
determining variations in a limited group of organisms (bacteria,
phytoplankton, zooplankton, fish, mammals, etc.), often relative
to environmental conditions and more rarely exploring biotic
interactions between them. Comprehensive ecosystem studies are
hampered by the lack of practical methods and expertise needed
to quantify biodiversity. The development of eDNA methods
provides a unique lens into marine biodiversity by enabling the
simultaneous examination of organisms across multiple trophic
levels and domains of life that can provide critical information
about the complex biotic interactions related to ecosystem
change.

Assessing the temporal variability of complex biological com-
munities is challenging because individual taxa respond differ-
ently to changing environmental conditions. Our results confirm
that groups of marine organisms can be effectively clustered into
communities (subnetworks) that fluctuate in composition and
abundance over time. Disentangling the total biodiversity of a
location can help identify previously unknown taxa that could
serve as keystone species, which in turn may be used as indicators
of change due to external environmental or biotic factors (i.e.,
temperature, pH, nutrient availability or food web interaction).
Applying eDNA metabarcoding to monitor biodiversity in longer
time-series will increase the power and validity of this technique
for predicting ecosystem response to climate change and help
inform conservation strategies. Biodiversity fluctuations with time
would ideally be observed on a species level, albeit the lower the
taxonomy assignment, the lower the confidence in that assign-
ment becomes. This emphasises the importance for database
expansion and development for eDNA taxonomic assignments.

Using eDNA can also help identify cryptic taxa and detect taxa
that are difficult to identify (e.g., the Family Paralichthyidae
(benthic flat fish), detected in this study), although it does not
allow us to identify stages of life history and could include
sequences from dead or decaying biological matter. Amplification
of DNA is subject to substantial primer biases and is almost
certainly affected by inhibitors and variable abundances of tem-
plate DNA; these complications likely affect the number of taxa
detected with these methods, and consequently, we note that no
method—including this one—identifies all taxa in an ecosystem.
However, eDNA analysis can combine observations across orders
of magnitudes of organismal body size (i.e., microbes to mam-
mals), across many trophic levels, and across vastly different
domains of life. This property allows us to explore target species
for conservation that could be secondarily combined with tradi-
tional methods (e.g., visual identification for abundance mea-
sures) for a more thorough survey of specific organisms or
communities of interest. These analyses can predict taxon inter-
dependencies that should be further investigated through
hypothesis-based research and experiments.

We illustrate the utility of eDNA metabarcoding to create
hypotheses that expand upon well-documented predator–prey
interactions (e.g., baleen whales and krill in the blue subnetwork)
by including previously unexamined trophic connections, such as
the co-occurrence of specific primary producers and microbial
groups. Within the grey network, the co-occurrence of the taxa
Otariidae (sea lions), Carangidae (jacks) and Metridinidae
(copepods) are putative predator–prey relationships. Pacific jack
mackerel was a particularly important component of the Cali-
fornia sea lion diet in 201527, whether their co-occurrence in our
study is driven by direct predator–prey relationships or is instead
a common response to an external driver is unclear. Our network
analyses also indicated the co-occurrence of several additional
taxa within this subnetwork, including Pelagibacteraceae (bac-
teria), Rhodospirillaceae (bacteria) and two parasitic groups, the

Ellobiopsidae (protists) and Syndiniaceae (dinoflagellates) that
support the ‘predator–prey’ co-occurrence hypothesis. The Ello-
biopsidae and Syndiniaceae are known parasites of copepods,
radiolarians, crustaceans and some fish, which lends support to
the hypothesis that linkage of taxa within a given subnetwork
reflects ecological interactions (see Supplementary Fig. 11, for an
example of species level networks). Furthermore, taxa in different
subnetworks may nevertheless interact. For example, despite the
grouping of anchovies within the green subnetwork, they have
known trophic interactions to baleen whales, which are in the
blue subnetwork. This is simply an example of a higher correla-
tion and co-occurrence of anchovies with their potential prey
(copepods) within the green subnetwork36 and further highlights
the importance of taxa succession in monitoring predator–prey
interactions over time.

Although network connectivity does not necessarily indicate
interaction, a more connected taxon is more likely to present
similar patterns of abundance, occurring at the same times as
other taxa from that subnetwork (i.e., it is highly correlated with
more taxa within that network than a less connected taxon). The
Balaenopteridae (humpback whales) and Rhodospirillaceae
(proteobacteria) are the most connected taxa within the blue and
grey subnetworks, respectively. Given that the most connected
taxa (see Methods) are highly sensitive to environmental vari-
ables, we hypothesise that these taxa may represent potential
indicators of different ecosystem states34, similarly to keystone
species predicted from microbial networks by Banerjee et al.
(2018)31,34,37. These taxa could be used as early-warning indi-
cators of regime shifts through entire biomes following
ecosystem-scale events, such as El Niño cycles, upwelling, or
anthropogenic disturbances, which would most likely be detected
by eDNA over a longer time period19. The more highly connected
taxa within different subnetworks at a given site can potentially be
considered Essential Ocean Variables38. Such variables are
required by biodiversity assessments, remote monitoring tools
with built-in biological sensors, and ecosystem models. eDNA
provides one potential means for identifying and monitoring
indicator taxa, and the incorporation of these data into long-term
monitoring programmes, such as the marine biodiversity obser-
vation network (MBON)39,40, can help address national and
international needs for practical measures of biodiversity.

We conclude that when applied to an ecosystem over time,
surveys using eDNA analysis can yield data-based biological
indicators of ecosystem change. Increasing such datasets can
improve forecasting of biodiversity shifts that may result from
environmental changes that occur across varied time scales and
locations19. The essential biological observations provided by this
technique will aid future efforts for proactive conservation of life
in the world’s oceans.

Methods
Sample collection and laboratory methods. Sampling was carried out on the R/V
Rachel Carson and Western Flyer bimonthly at the permanent Monterey Bay (MB)
time series station C1 (36.797°N, 121.847°W) (Supplementary Fig. 1). Seawater
samples for eDNA were collected using Niskin bottles on a CTD rosette at
approximately 0–1 m depth. At each sampling point, a single 1 l water sample was
filtered onto a 0.22 μm pore size polyvinylidene difluoride membrane filter (Mil-
lipore, USA). All filters were flash frozen in liquid nitrogen and preserved at
−80 °C until further analysis. The team sacrificed biological replication for more
distinct samples and a higher sequencing depth per sample based on previous
studies resulting in minimal differences between replicates8,9,41.

DNA extraction was performed on all membrane filters using the Qiagen
DNeasy Blood and Tissue Kit with modifications according to Djurhuus et al. and
Walz et al.41,42. Subsequently, all samples were metabarcoded for the 16S rRNA43,
18S rRNA44, COI45 and 12S rRNA46 genes (see Supplementary data for sample
barcodes). Polymerase chain reaction (PCR) reactions, artificial communities
(positive) and a non-template control (negatives) together with DNA extraction
blanks (blanks) were run in triplicates (see Supplementary Fig. 2). The replicate
PCR products were pooled for each sample by genetic marker and run through an
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agarose gel to confirm the presence of target bands, clean negatives and the absence
of non-specific amplification. PCR products were purified and size selected using
the Agencourt AMPure XP bead system (Beckman Coulter, USA). A second
agarose gel was run to confirm primer removal and retention of target amplicons
after purification. Purified products were then quantified using the Quant-It
Picogreen dsDNA Assay (Life Technologies) on an fmax Molecular Devices
Fluorometer with SoftMaxPro v1.3.1 (16S rRNA, 18S rRNA and COI genes) or
using a Qubit dsDNA HS kit (12S rRNA gene). Equimolar pools were constructed
and quantified to confirm pool concentration prior to library preparation. One
library was constructed from the pooled product for each genetic locus using the
KAPA HyperPrep and Library Quantification kits following manufacturer’s
protocol. Libraries were loaded on a standard MiSeq v2 flow cell and one
sequencing run per genetic locus was performed in a 2 × 250 bp paired end format
using a v2 500-cycle MiSeq reagent cartridge. For the 16S rRNA, 18S rRNA and
COI genes the MiSeq runs were performed with a 10% PhiX174 spike in, while for
12S rRNA 20% PhiX174 was added. Custom sequencing primers were added to
appropriate wells of the reagent cartridge. Base calling was done by Illumina Real
Time Analysis (RTA) v1.18.54 and the output of RTA was demultiplexed and
converted to FastQ format with Illumina Bcl2fastq v2.18.0.

Bioinformatics. Resulting sequences from the four libraries (16S rRNA, 18S rRNA,
COI, and 12S rRNA) were processed through a modified version of the banzai
pipeline Unix shell script47. Paired-end reads were assembled and filtered with
PEAR48. Homopolymers were removed with grep and awk commands. Samples
were concatenated, and tags were removed. Primers were removed with cutadapt
(Martin, EMBnet) and singletons were removed. Operational taxonomic units
(OTUs) were clustered with Swarm49. Chimeras were removed with VSEARCH
v1.8.0.

Taxonomic annotations for 16S rRNA were performed with GreenGenes 13.5
downloaded on December 17, 2016. Taxonomic annotations for 18S rRNA, COI
and 12S rRNA were performed with the GenBank nr BLASTN database that was
downloaded from NCBI on September 20, 2017. The max target sequence within
the BLAST algorithm was interpreted according to Shah et al.50. Annotations with
>80% identities were retained (Supplementary Table 1). These annotations were
then interpreted through MEGAN6, which only considered hits that had a bitscore
of greater than 100 and were within the top 2% highest scoring hits per contig. The
most recent common ancestors of these hits were subsequently determined.

Occupancy modelling of sequencing data. For each individual-locus dataset, the
first step of decontamination was to determine the OTUs likely to be truly present
in the dataset vs. those likely to be false-positive discoveries (e.g., artefacts of PCR
or sequencing), see Supplementary Fig. 2. We used a site-occupancy model to
estimate the probability of OTU occurrence51,52, using multiple PCR replicates of
each environmental sample as independent draws from a common binomial dis-
tribution. We eliminated any OTU with <80% estimated probability of occurrence
(a break point in the observed distribution of occupancy probabilities) from the
dataset.

Decontamination of sequencing data. Further decontamination followed the
procedure described in ref. 53. This entailed (1) subtracting the most-likely OTU-
specific proportional contribution of contamination from each OTU in the field
samples, blanks and negatives to minimise the effect of potential cross-
contamination among samples due to tag-jumping54 or similar effects; and (2)
dropping samples that had highly dissimilar PCR replicates (Bray–Curtis dissim-
ilarities >0.49, which were outside of the 95% confidence interval given the best-fit
model of the observed among-replicate dissimilarities).

Abundance indexing of sequencing data. After decontamination we grouped all
OTUs by their Family annotation or, if an OTU could not be annotated to Family,
to Order or Class. In this manuscript we refer to a taxon as an individual Family,
Order or Class, using the most specific taxonomic resolution available at or above
Family level. One taxon might represent several OTUs, species or genera, but due
to the sheer number of OTUs, species and genera, all analyses were done at higher
classifications to simplify the results. However, the analysis could potentially be
done at a lower taxonomic level, if desired, understanding that species-level
annotations may not be reliable for some taxonomic groups and, for some species
complexes, species cannot always confidently be discerned with a targeted gene loci
(see Supplementary Fig. 11).

Metabarcoding datasets are a product of many analytical steps including from
sampling technique, DNA extraction method, amplification with particular
primers, sequencing depth and technique, quality control and bioinformatic
processing. Each of these steps might influence the number of reads assigned to a
particular taxon in a given sequencing run. Comprehensively understanding the
sources of this bias is a significant undertaking55. However, it is likely that PCR and
primer bias is by far the largest source of variance in the eDNA process: out of the
same environmental extract, different primer pairs produce completely different
sets of taxa for analysis9,14,56. As such, combining information from eDNA
analyses that use different primer sets is an important opportunity to develop a
more comprehensive sampling of taxa in a given environment. To combine

information recovered from different loci, we standardised each dataset by
determining the proportion of reads assigned to each taxon within each water
sample and then dividing these by the largest observed proportion for each taxon to
create a taxon-specific index of eDNA reads that varied (across samples) between
zero and one (1) into an eDNA index, see Kelly et al.15.

eDNAij ¼
YijP
i
Yi

maxj
YijP
i
Yi

� � : ð1Þ

This normalisation reflects the intuition that raw read counts, standing alone,
do not provide reliable information about the abundance of taxa present—rather
they are information about the interaction of a particular primer set with a
particular taxon template. These indices of abundance are calculated only within-
taxon, within-locus. Moreover, because we can treat individual loci as effectively
independent, we then create an ensemble index of abundance—for each taxon at
each time point—by taking the mean of the indices for that taxon across different
loci. If a locus does not amplify a taxon, it provides no information about that
taxon; consequently, we include in the ensemble index only non-zero indices for
each taxon. The result is an ensemble index that appears to behave sensibly with
respect to individual-locus observations, and that allows us to track changes in
abundance of eDNA for many individual taxa simultaneously.

Correlation and correction for multiple comparisons. This is a short-time-series
dataset, with hundreds of taxa varying in abundance over eight time points.
Consequently, (1) the number of pairwise comparisons is far greater than the
number of data points within a single comparison, and (2) individual comparisons
of eight rank-abundance values (some of which are zero) result in many ties. We
used Kendall’s tau as our measure of rank correlation to best handle these ties. We
chose Kendall’s tau because it is robust to outliers (i.e., the difference in rank
between the two highest points is equal to that between the two lowest). However,
there is no general null-probability distribution for values of tau, making it difficult
to precisely distinguish observed correlations from those expected by chance alone.
Doing so is particularly critical when correcting for multiple comparisons: because
we have tens of thousands of pairwise comparisons, many will have large values
even under the null distribution. We therefore generated a null distribution and
determined statistical significance for correlations as follows:

1. We randomly permuted our dataset to generate 100 null versions, and
carried out pairwise Kendall correlations for all taxa within each of those
permuted versions, creating a null distribution of Kendall’s tau with a total
of 6.5 × 104 pairwise comparisons.

2. For each value of tau, we then calculated the proportion of null datasets
containing that value or greater, resulting in a probability of seeing a given
value of tau by chance alone. This was effectively the probability density
distribution for tau, given our data.

3. We then compared our observed correlations to this null distribution to
derive a p value for each of our observed data points.

4. We then adjusted this p value for multiple comparisons—our dataset
required 6.5 × 104 pairwise comparisons—using the mean
Benjamani–Hochberg false-discovery rate adjustment (in this application,
the adjustment is also equal to the Bonferroni correction), and considered all
correlations having an adjusted p value smaller than 0.05 to be significant.
Our critical value of tau was 0.7; we counted all values above this threshold
as significant after p value correction.

Trophic assignments of taxa. We further characterised taxonomic annotations by
assigning a trophic assignment and additional life history characteristics. Trophic
assignments were assigned to a scale of 0–5 (Archaea, Bacteria, and fungi, primary
producers, primary consumers, secondary consumers and tertiary consumer).
Bacteria were characterised as mixotrophic if the taxon uses sunlight-coupled
oxidation in addition to heterotrophy. We used the National Centre for Bio-
technology (NCBI), World Register of Marine Organisms (WoRMS), Encyclo-
paedia of Life (EOL), Integrated Taxonomic Information Systems (ITIS), taxa-
specific databases, Wikipedia and peer-reviewed papers served as sources to verify
trophic assignments and assign a group classification (e.g., copepod and parasitic).
Taxa trophic and group assignments were assigned again by a second person to
verify the reliability of assignment and finally confirmed with a third
assignment check.

Weighted correlation network analysis. To determine the weighted correlation
we calculated a correlation matrix containing all pairwise Kendall tau correlations
between all taxa across all samples17. We define correlation networks as undirected,
weighted taxa networks. The nodes of the network correspond to taxa, and edges
between taxa are determined by the pairwise Kendall’s tau correlations between the
amplicon-index abundance of the taxa (Supplementary Fig. 3). By raising the
absolute value of the Kendall’s tau correlation to a power β, the weighted corre-
lation network construction emphasises large correlations at the expense of low
correlations. To calculate the weighted correlations we used the formula, aij= |cor
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(xi, xj)|β. This represents the adjacency of a weighted taxa network. We used the
scale free topology criterion to choose the soft threshold β= 2216.

To organise taxa into subnetworks, we used the topological overlap measure as
a robust measure of interconnectedness in a hierarchical cluster analysis16,17. The
result is a list of taxa (nodes) and their connectedness to each other (weight) based
on Kendall’s tau correlation raised to the power of 22 divided by clustering
patterns, i.e., taxa that showed similar patterns over time were subdivided into the
same subnetworks with varying degrees of correlation/similarity. We used the
Dynamic Tree Cut function to divide the clusters into subnetworks, see: https://
peterlangfelder.com/2018/12/30/why-wgcna-modules-dont-always-agree-with-the-
dendrogram/.

All subnetworks were examined for correlation to all environmental variables
using a Pearson correlation (Supplementary Fig. 5). The intra-network connectivity
was calculated from the sum of edge weights (degree of correlation) the individual
taxa had.

Sparse partial least squares analysis. In order to directly associate specific taxa
to environmental variables (Fig. 3), we used sparse partial least square (sPLS)
analysis from the R package mixOmics57,58. We applied the sPLS in regression
mode, which will model a causal relationship between the lineages and the
environmental traits, that is, PLS will predict environmental traits (e.g., tempera-
ture) from lineage abundances. This approach enabled us to identify strong cor-
relations between certain taxa and environmental variables without taking into
account the global structure of the planktonic community.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data have been deposited with links to BioProject accession number PRJNA433203
in the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/). The source
data underlying Figs. 1–3 and Supplementary Figs. 2, 4, 7, 8 and 10 are provided as a
Source Data file. The map image in Supplementary Fig. 1 was created using the m_map
mapping toolbox for MATLAB® commercial software. The coastline shown in the map is
based on data from the Global Self-consistent, Hierarchical, High-resolution Geography
Database (GSHHG): https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html.

Code availability
All scripts for analysis are available on github: https://github.com/marinebon/
eDNA_microbes_whales.
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